Advertisement

Visual Intelligent Decision Support Systems in the Medical Field: Design and Evaluation

  • Hela Ltifi
  • Mounir Ben Ayed
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9605)

Abstract

The tendency for visual data mining applications in the medical field is increasing, because it is rich with temporal information, furthermore visual data mining is becoming a necessity for intelligent analysis and graphical interpretation. The use of interactive machine learning allows to improve the quality of medical decision-making processes by effectively integrating and visualizing discovered important patterns and/or rules. This chapter provides a survey of visual intelligent decision support systems in the medical field. First, we highlight the benefits of combining potential computational capabilities of data mining with human judgment of visualization techniques for medical decision-making. Second, we introduce the principal challenges of such decision systems, including the design, development and evaluation. In addition, we study how these methods were applied in the medical domain. Finally, we discuss some open questions and future challenges.

Keywords

Decision support systems Data mining Visualization Medical field 

Notes

Acknowledgements

The authors would like to acknowledge the financial support for this research by grants from the ARUB program under the jurisdiction of the General Direction of Scientific Research (DGRST) (Tunisia).

References

  1. 1.
    Abed, M., Bernard, J.M., Angué, J.C.: Task analysis and modeling by using SADT and Petri Networks. In: Proceedings Tenth European Annual Conference on Human Decision Making and Manual Control, Liege, Belgium (1991)Google Scholar
  2. 2.
    Acevedo, D., Jackson, C.D., Drury, F., Laidlaw, D.H.: Using visual design experts in critique-based evaluation of 2D vector visualization methods. IEEE Trans. Visual Comput. Graphics 14(4), 877–884 (2008)CrossRefGoogle Scholar
  3. 3.
    André, J.: Moving From Merise to Schlaer and Mellor, 3rd edn. SIG-Publication, New York (1994)Google Scholar
  4. 4.
    Lee, J., Barley, M. (eds.): PRIMA 2003. LNCS (LNAI), vol. 2891. Springer, Heidelberg (2003). doi: 10.1007/b94219 Google Scholar
  5. 5.
    Basole, R.C., Braunstein, M.L., Kumar, V., Park, H., Kahng, M., Chau, D.H., et al.: Understanding variations in pediatric asthma care processes in the emergency department using visual analytics. J. Am. Med. Inform. Assoc. 22(2), 318–323 (2015)CrossRefGoogle Scholar
  6. 6.
    Ayed, M.B., Ltifi, H., Kolski, C., Alimi, M.A.: A user-centered approach for the design and implementation of KDD-based DSS: a case study in the healthcare domain. Decis. Support Syst. 50(1), 64–78 (2010)CrossRefGoogle Scholar
  7. 7.
    Ben Jemmaa, A., Ltifi, H., Ayed, M.B.: Multi-agent architecture for visual intelligent remote healthcare monitoring system. In: The 15th International Conference on Hybrid Intelligent Systems (HIS 2015) in Seoul, South Korea, pp. 211–221 (2015)Google Scholar
  8. 8.
    Benmohamed, E., Ltifi, H., Ayed, M.B.: Using Bloom’s taxonomy to enhance interactive concentric circles representation. In: The 12th ACS/IEEE International Conference on Computer Systems and Applications, Marrakech, Moroco (2015)Google Scholar
  9. 9.
    Boehm, B.: A spiral model of software development and enhancement. Computer 21, 61–72 (1988)CrossRefGoogle Scholar
  10. 10.
    Burnett, C.: Trust assessment and decision-making in dynamic multi-agent systems, Ph.D. Dissertation, Department of Computing Science, University of Aberdeen (2011)Google Scholar
  11. 11.
    Cleveland, W.S.: The Elements of Graphing Data. Hobart Press, Summit (1994)Google Scholar
  12. 12.
    Chen, C., Czerwinski, M.: Empirical evaluation of information visualizations: an introduction. Int. J. Hum.-Comp. Studies 53, 631–635 (2000)CrossRefGoogle Scholar
  13. 13.
    Courbon, J.C., Grageof, J., Tomasi, J.: L’approche évolutive. Informatique et Gestion 21, 29–34 (1981)Google Scholar
  14. 14.
    Dearden, A., Harrison, M., Wright, P.: Allocation of function: scenarios, context and the economics of effort. Int. J. Hum.-Comp. Studies 52, 289–318 (2000)CrossRefGoogle Scholar
  15. 15.
    Duribreux-Cocquebert, M.: MODESTI: vers une méthodologie interactive de développement de Systèmes à Base de Connaissances, Ph.D. Thesis, University of Valenciennes, France (1995)Google Scholar
  16. 16.
    Ellouzi, H., Ltifi, H., Ayed, M.B.: New Multi-agent architecture of visual intelligent decision support systems: application in the medical field. In: The 12th ACS/IEEE International Conference on Computer Systems and Applications, Morocco (2015)Google Scholar
  17. 17.
    El-Sappagh, S.H., El-Masri, S.: A distributed clinical decision support system architecture. J. King Saud Univ. Comput. Inf. Sci. 26(1), 69–78 (2014)Google Scholar
  18. 18.
    Fails, J., Karlson, A., Shahamat, L., Shneiderman, B.: A visual interface for multivariate temporal data: finding patterns of events across multiple histories. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 167–174 (2006)Google Scholar
  19. 19.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data mining: towards a unifying framework. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 82–88. AAAI Press, Portland, August 1996Google Scholar
  20. 20.
    Freitas, C., Luzzardi, P., Cava, R., Pimenta, M., Winckler, A., Nedel, L.: Evaluating usability of information visualization techniques. In: Proceeding Advanced Visual Interfaces (AVI 2002), pp. 373–374 (2002)Google Scholar
  21. 21.
    Gachet, A., Sprague, R.: A context-based approach to the development of decision support systems. Encycl. Decis. Making Decis. Support Technol. 2, 93–101 (2008)CrossRefGoogle Scholar
  22. 22.
    Gonzales, V., Kobsa, A.: A workplace study of the adoption of information visualization systems. In: Proceeding I-KNOW 2003, Third International Conference Knowledge Management, pp. 92–102 (2003)Google Scholar
  23. 23.
    Gordon, H.S., Johnson, M.L., Wray, N.P., et al.: Mortality after noncardiac surgery: prediction from administrative versus clinical data. Med. Care 43, 159–167 (2005)CrossRefGoogle Scholar
  24. 24.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufman, Los Altos (2006)zbMATHGoogle Scholar
  25. 25.
    Hardin, J.M., Chhieng, D.C.: Data mining and clinical decision support systems. In: Berner, E.S. (ed.) Clinical Decision Support Systems Theory and Practice. Health Informatics, pp. 44–63. Springer, New York (2007)CrossRefGoogle Scholar
  26. 26.
    Hartson, H., Hix, D.: Developing User Interfaces: Ensuring Usability through Product and Process. Wiley, New York (1993)zbMATHGoogle Scholar
  27. 27.
    Hoc, J.M., Amalberti, R.: Diagnosis: Some theoretical questions raised by applied research. Current Psychol. Cogn. 14(1), 73–101 (1995)Google Scholar
  28. 28.
    Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics, pp 1–13 (2016)Google Scholar
  29. 29.
    Irani, P., Ware, C.: Diagramming information structures using 3D perceptual primitives. ACM Trans. Comput.-Hum. Interact. 10(1), 1–19 (2003)CrossRefGoogle Scholar
  30. 30.
    Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T.: A systematic review on the practice of evaluating visualization. IEEE Trans. Visual Comput. Graph. 19(12), 2818–2827 (2013)CrossRefGoogle Scholar
  31. 31.
    Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addison Wesley Longman, Boston (1999)Google Scholar
  32. 32.
    Jeanquartier, F., Jean-Quartier, C., Holzinger, A.: Integrated web visualizations for protein-protein interaction databases. BMC Bioinformatics 16(1), 195 (2015)CrossRefGoogle Scholar
  33. 33.
    Jemal, H., Kechaou, Z., Ayed, M.B., Alimi, A.M.: A multi agent system for hospital organization. Int. J. Mach. Learn. Comput. 5(1), 51–56 (2015)CrossRefGoogle Scholar
  34. 34.
    Juarez, O.: CAEVA: cognitive architecture to evaluate visualization applications. In: Proceeding International Conference Information Visualization (IV 2003), pp. 589–595 (2003)Google Scholar
  35. 35.
    Jungermann, H., Fischer, K.: Using expertise and experience for giving and taking advice. In: Betsch, T., Haberstroh, S. (eds.) The Routines and Decision Making. Lawrence Erlbaum, Mahwah (2005)Google Scholar
  36. 36.
    Keefe, D.F., Karelitz, D.B., Vote, E.L., Laidlaw, D.H.: Artistic collaboration in designing VR visualizations. IEEE Comput. Graph. Appl. 25(2), 18–23 (2005)CrossRefGoogle Scholar
  37. 37.
    Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Visual Comput. Graph. 8(1), 1–8 (2002)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Khademolqorani, S., Hamadani, A.Z.: An adjusted decision support system through data mining and multiple criteria decision-making. In: Social and Behavioral Sciences, vol. 73, pp. 388–395 (2013)Google Scholar
  39. 39.
    Kobsa, A.: An empirical comparison of three commercial information visualization systems. In: Proceeding IEEE InfoVis, pp. 123–130 (2001)Google Scholar
  40. 40.
    Kolski, C.: A call for answers around the proposition of an HCI-enriched model. ACM SIGSOFT Softw. Eng. Notes 3, 93–96 (1998)CrossRefGoogle Scholar
  41. 41.
    Kountchev, R., Iantovics, B. (eds.): Advances in Intelligent Analysis of Medical Data and Decision Support Systems. Studies in Computational Intelligence, vol. 473. Springer, Heidelberg (2013)Google Scholar
  42. 42.
    Krzywicki, D., Faber, L., Byrski, A., Kisiel-Dorohinicki, M.: Computing agents for decision support systems. Future Gener. Comput. Syst. 37, 390–400 (2014)CrossRefGoogle Scholar
  43. 43.
    Kumar, A., Gosain, A.: Analysis of health care data using different data mining techniques. in: International Conference on Intelligent Agent & Multi-Agent Systems (IAMA), Chennai, pp. 1–6 (2009)Google Scholar
  44. 44.
    Kuo, K.-L., Fuh, C.-S.: A rule-based clinical decision model to support interpretation of multiple data in health examinations. J. Med. Syst. 35(6), 1359–1373 (2011)CrossRefGoogle Scholar
  45. 45.
    Kosara, R.: Visualization criticism – the missing link between information visualization and art. In: Proceeding Information Visualization, pp. 631–636. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  46. 46.
    Lepreux, S.: Approche de Développement centré décideur et à l’aide de patrons de Systèmes Interactifs d’Aide à la Décision, PhD Thesis, Valenciennes, France (2005)Google Scholar
  47. 47.
    Leonard, J.E., Colombe, J.B., Levy, J.L.: Finding relevant references to genes and proteins in Medline using a Bayesian approach. Bioinformatics 18, 1515–1522 (2002)CrossRefGoogle Scholar
  48. 48.
    Long, J.B., Denley, I.: Evaluation for practice: tutorial. In: Ergonomics Society Annual Conference (1990)Google Scholar
  49. 49.
    Ltifi, H., Ayed, M.B., Lepreux, S., et al.: Survey of information visualization techniques for exploitation in KDD. In: IEEE AICCSA, Rabat, Morocco, pp. 218–225. IEEE Computer Society, New York (2009)Google Scholar
  50. 50.
    Ltifi, H., Trabelsi, G., Ayed, M.B., Alimi, A.M.: Dynamic decision support system based on Bayesian Networks, application to fight against the Nosocomial Infections. Int. J. Adv. Res. Artif. Intell. (IJARAI) 1(1), 22–29 (2012)Google Scholar
  51. 51.
    Ltifi, H., Kolski, C., Ayed, M.B., et al.: Human-centered design approach for developing dynamic decision support system based on knowledge discovery in databases. J. Decis. Syst. 22(2), 69–96 (2013)CrossRefGoogle Scholar
  52. 52.
    Ltifi, H., Mohamed, E.B., Ayed, M.B.: Interactive visual KDD based temporal decision support system. Inform. Visual. 14(1), 1–20 (2015)Google Scholar
  53. 53.
    Ltifi, H., Kolski, C., Ayed, M.B.: Combination of cognitive and HCI modeling for the design of KDD-based DSS used in dynamic situations. Decis. Support Syst. 78, 51–64 (2015)CrossRefGoogle Scholar
  54. 54.
    McDermid, J., Ripkin, K.: Life Cycle Support in the ADA Environment. Cambridge University Press, Cambridge (1984)Google Scholar
  55. 55.
    Mackinlay, J.D.: Automating the design of graphical presentations of relational information. ACM Trans. Graphics 5, 110–141 (1986)CrossRefGoogle Scholar
  56. 56.
    Mazza, R., Berre, A.: Focus group methodology for evaluating information visualization techniques and tools. In: 11th International Conference on Information Visualization, IV 2007, Zurich, pp. 74–80. IEEE (2007)Google Scholar
  57. 57.
    Millot, P.: Cooperative organization for Enhancing Situation Awareness. In: Millot, P. (ed.) Risk Management in Life Critical Systems, pp. 279–300. ISTE-Wiley, London (2014)Google Scholar
  58. 58.
    Monroe, M., Lan, R., del Olmo, J.M., Shneiderman, B., Plaisant, C., Millstein, J.: The challenges of specifying intervals and absences in temporal queries: a graphical language approach. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 2349–2358. ACM, New York (2013)Google Scholar
  59. 59.
    Müller, H., Reihs, R., Zatloukal, K., Holzinger, A.: Analysis of biomedical data with multilevel glyphs. BMC Bioinformatics 15(Suppl 6), S5 (2014)CrossRefGoogle Scholar
  60. 60.
    Musen, M.A., Shahar, Y., Shortliffe, E.H.: Clinical Decision-Support Systems, Biomedical Informatics. Part of the series Health Informatics, pp. 698–736 (2006)Google Scholar
  61. 61.
    Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco (1993)zbMATHGoogle Scholar
  62. 62.
    North, C.: Toward measuring visualization insight. IEEE Comput. Graphics Appl. 11(4), 443–456 (2005)Google Scholar
  63. 63.
    Nykanen, P.: Decision support system from a health informatics perspective, Ph.D. Thesis, University of Tampere (2000)Google Scholar
  64. 64.
    Otasek, D., Pastrello, C., Holzinger, A., Jurisica, I.: Visual data mining: effective exploration of the biological universe. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics: State-of-the-Art and Future Challenges. LNCS, vol. 8401, pp. 19–34. Springer, Heidelberg (2014)Google Scholar
  65. 65.
    Perer, A., Wang, F.: Frequence: interactive mining and visualization of temporal frequent event sequences. In: Proceedings of the 19th International Conference on Intelligent User Interfaces, IUI 2014, pp. 153–162. ACM, New York (2014)Google Scholar
  66. 66.
    Plaisant, C.: The challenge of information visualization evaluation, In: AVI 2004, Proceeding Advanced visual interfaces, pp. 109–116 (2004)Google Scholar
  67. 67.
    Polk, T., Seifert, C.: Cognitive Modeling. Bradford Books series, A Bradford Book, 1292 pages (2002)Google Scholar
  68. 68.
    Posard, M.: Status processes in human-computer interactions: does gender matter? Comput. Hum. Behav. 37(37), 189–195 (2014)CrossRefGoogle Scholar
  69. 69.
    Power, D.: Decision Support Systems: Frequently Asked Questions. iUniverse, Inc., 252 pages (2004)Google Scholar
  70. 70.
    Power, D.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)Google Scholar
  71. 71.
    Rieman, J.: A field study of exploratory learning strategies. ACM Trans. Comput.-Hum. Interact. 3, 189–218 (1996)CrossRefGoogle Scholar
  72. 72.
    Royce, W.: Managing the development of large software systems: concepts and techniques. WESCON, Technical Papers (1970)Google Scholar
  73. 73.
    Saraiya, P., North, C., Duca, K.: An insight-based methodology for evaluating bioinformatics visualizations. IEEE Trans. Visual Comput. Graphics 11(4), 443–456 (2005)CrossRefGoogle Scholar
  74. 74.
    Sears, A., Jacko, J.A. (eds.): The Human Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications, 2nd edn. Lawrence Erlbaum Associates, Mahwah (2008)Google Scholar
  75. 75.
    Shibl, R., Lawley, M., Debuse, J.: Factors influencing decision support system acceptance. Decis. Support Syst. 54(2), 953–961 (2013)CrossRefGoogle Scholar
  76. 76.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy. In: Proceeding IEEE Symposium Visual Languages 1996, pp. 336–343 (1996)Google Scholar
  77. 77.
    Shneiderman, B., Plaisant, C.: Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In: Proceeding BELIV, pp. 81–87. ACM, New York (2006)Google Scholar
  78. 78.
    Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.): Visual Data Mining. LNCS, vol. 4404. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71080-6 Google Scholar
  79. 79.
    Sommerville, I.: What is Software Engineering? 8th edn, p. 7. Pearson Education, Harlow (2007). ISBN 0-321-31379-8Google Scholar
  80. 80.
    Tran, T.T.: Protecting buying agents in e-marketplaces by direct experience trust modelling. Knowl. Inf. Syst. 22(1), 65–100 (2010)CrossRefGoogle Scholar
  81. 81.
    Tory, M., Moller, T.: Evaluating visualizations: do expert reviews work? IEEE Comput. Graphics Appl. 25(5), 8–11 (2005)CrossRefGoogle Scholar
  82. 82.
    Tsolis, D., Paschali, K., Tsakona, A., Ioannou, Z.-M., Likothanasis, S., Tsakalidis, A., Alexandrides, T., Tsamandas, A.: Development of a clinical decision support system using AI, medical data mining and web applications. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 384, pp. 174–184. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41016-1_19 CrossRefGoogle Scholar
  83. 83.
    Turban, E., Aronson, J.E., Liang, T.P.: Decision Support Systems and Intelligent Sytems, 7th edn. Prentice Hall, Englewood Cliffs (2004)Google Scholar
  84. 84.
    Walsh, P., Cunningham, P., Rothenberg, S.J., O’Doherty, S., Hoey, H., Healy, R.: An artificial neural network ensemble to predict disposition and length of stay in children presenting with bronchiolitis. Eur. J. Emerg. Med. 11, 259–564 (2004)CrossRefGoogle Scholar
  85. 85.
    Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco (2004)Google Scholar
  86. 86.
    Wooldridge, M.: An Introduction to Multi-Agent Systems, p. 366. Wiley (2002)Google Scholar
  87. 87.
    Wongsuphasawat, K., Gotz, D.: Outflow: visualizing patient flow by symptoms and outcome. IEEE, Providence (2011)Google Scholar
  88. 88.
    Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.: A survey of multi-agent trust management systems. IEEE Access 1(1), 35–50 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.REsearch Groups on Intelligent Machines, National School of Engineers (ENIS)University of SfaxSfaxTunisia
  2. 2.Faculty of Sciences and Techniques of Sidi BouzidUniversity of KairouanKairouanTunisia
  3. 3.Computer Sciences and Communication DepartmentFaculty of Sciences of SfaxSfaxTunisia

Personalised recommendations