Formation Control of Multi-Agent Systems with Location Uncertainty



In this chapter the impact of realistic communication channels and uncertain location information on formation control of multi-agent systems aiming to achieve a common task is highlighted. First, the work is motivated by elucidating the need to incorporate realistic communication models as well as the need to model the agents’ location uncertainty. Second, it is discussed how control can be utilised to reduce the agents positioning error in cooperative systems to achieve a higher level goal, such as steering a group of agents towards a destination. Third, the impact of location uncertainty on channel gain prediction is addressed for formation control. Finally, conclusions and an outlook on future directions for controlled multi-agent systems are provided.


Multi-agent systems Gaussian processes Channel prediction Formation control Swarm navigation Cramér-Rao bound Location uncertainty Spatial correlation 



This work was financially supported by EU FP7 Marie Curie Initial Training Network MULTI-POS (Multi-technology Positioning Professionals) under grant nr. 316528. This work was also partially supported by the German project VaMEx-CoSMiC, which is supported by the Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag, grant 50NA1521 administered by DLR Space Administration, the EU project HIGHTS MG-3.5a-2014-636537, the European Research Council under Grant No. 258418 (COOPNET); and the DLR project Dependable Navigation.


  1. 1.
    P. Agrawal, N. Patwari, Correlated link shadow fading in multi-hop wireless networks. IEEE Trans. Wirel. Commun. 8 (8), 4024–4036 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Böttcher, P. Vary, C. Schneider, R.S. Thomä, De-correlation distance of the large scale parameters in an urban macro cell scenario, in 6th European Conference on Antennas and Propagation (EUCAP) (2012), pp. 1417–1421Google Scholar
  3. 3.
    A.S. Chhetri, D. Morrell, A. Papandreou-Suppappola, On the use of binary programming for sensor scheduling. IEEE Trans. Signal Process 55 (6), 2826–2839 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Cohen, D.L. Jones, S. Narayanan, Expected-utility-based Sensor Selection for State Estimation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, New York, 2012), pp. 2685–2688Google Scholar
  5. 5.
    K. Das, H. Wymeersch, Censoring for Bayesian cooperative positioning in dense wireless networks. IEEE J. Sel. Areas Commun. 30 (9), 1835–1842 (2012)CrossRefGoogle Scholar
  6. 6.
    N.M.M. de Abreu, Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423 (1), 53–73 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    T. Eyceoz, A. Duel-Hallen, H. Hallen, Deterministic channel modeling and long range prediction of fast fading mobile radio channels. IEEE Commun. Lett. 2 (9), 254–256 (1998)CrossRefGoogle Scholar
  8. 8.
    J. Fink, Communication for Teams of Networked Robots. Ph.D. thesis, Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, August 2011Google Scholar
  9. 9.
    M. Fröhle, A.A. Zaidi, E. Ström, H. Wymeersch, Multi-step sensor selection with position uncertainty constraints, in IEEE Globecom Workshops (2014), pp. 1439–1444. doi:  10.1109/GLOCOMW.2014.7063636.
  10. 10.
    E.G. Garcia, L.S. Muppirisetty, E.M. Schiller, H. Wymeersch, On the trade-off between accuracy and delay in cooperative UWB localization: performance bounds and scaling laws. IEEE Trans. Wirel. Commun. 13 (8), 4574–4585 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Goldsmith, Wireless Communications (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  12. 12.
    M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, March 2014.
  13. 13.
    M. Gudmundson, Correlation model for shadow fading in mobile radio systems. Electron. Lett. 27 (23), 2145–2146 (1991). ISSN: 0013-5194. doi: 10.1049/el:19911328
  14. 14.
    M.F. Huber, On multi-step sensor scheduling via convex optimization, in 2nd International Workshop on Cognitive Information Processing (CIP), June 2010, pp. 376–381Google Scholar
  15. 15.
    N. Jalden, Analysis and Modelling of Joint Channel Properties from Multi-site, Multi-Antenna Radio Measurements. Ph.D. thesis, KTH, Signal Processing, 2010, pp. xviii, 224Google Scholar
  16. 16.
    S. Joshi, S. Boyd, Sensor selection via convex optimization. IEEE Trans. Signal Process. 57 (2), 451–462 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Kim, M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian. IEEE Trans. Autom. Control 51 (1), 116–120 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Kim, G. Zhu, J. Hu, Optimizing formation rigidity under connectivity constraints, in IEEE Conference on Decision and Control (CDC), 2010, pp. 6590–6595Google Scholar
  19. 19.
    G.J.M. Kruijff et al., Experience in system design for human–robot teaming in urban search and rescue, in Field and Service Robotics (Springer, Berlin, Heidelberg, 2014), pp. 111–125Google Scholar
  20. 20.
    M. Malmirchegini, Y. Mostofi, On the spatial predictability of communication channels. IEEE Trans. Wirel. Commun. 11 (3), 964–978 (2012)CrossRefGoogle Scholar
  21. 21.
    F. Meyer, H. Wymeersch, M. Frhle, F. Hlawatsch, Distributed estimation With information-seeking control in agent networks. IEEE J. Sel. Areas Commun. 33 (11), 2439–2456 (2015). doi: 10.1109/JSAC.2015.2430519 CrossRefGoogle Scholar
  22. 22.
    F. Morbidi, G.L. Mariottini, Active target tracking and cooperative localization for teams of aerial vehicles. IEEE Trans. Control Syst. Technol. 21 (5), 1694–1707 (2013)CrossRefGoogle Scholar
  23. 23.
    L.S. Muppirisetty, T. Svensson, H. Wymeersch, Spatial wireless channel prediction under location uncertainty. IEEE Trans. Wirel. Commun. 15 (2), 1031–1044 (2016). doi:  10.1109/TWC.2015.2481879 CrossRefGoogle Scholar
  24. 24.
    R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51 (3), 401–420 (2006). ISSN: 0018-9286. doi: 10.1109/TAC.2005.864190
  25. 25.
    G. Schirner, D. Erdogmus, K. Chowdhury, T. Padir, The future of human-in-the-loop cyber-physical systems. Computer 46 (1), 36–45 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Shamaiah, S. Banerjee, H. Vikalo, Greedy sensor selection: leveraging submodularity, in 49th IEEE Conference on Decision and Control (CDC) (IEEE, New York, 2010), pp. 2572–2577CrossRefGoogle Scholar
  27. 27.
    J.S. Shamma. Cooperative Control of Distributed Multi-agent Systems (Wiley Online Library, Chichester, 2007)CrossRefGoogle Scholar
  28. 28.
    X. Shen, P.K. Varshney, Sensor selection based on generalized information gain for target tracking in large sensor networks. IEEE Trans. Signal Process. 62 (2), 363–375 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Y. Shen, H. Wymeersch, M.Z. Win, Fundamental limits of wideband localization. Part II: cooperative networks. IEEE Trans. Inform. Theory 56 (10), 4981–5000 (2010). ISSN: 0018-9448. doi: 10.1109/TIT.2010.2059720
  30. 30.
    D. Simon, Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches (Wiley, 2006)CrossRefGoogle Scholar
  31. 31.
    S.S. Szyszkowicz, H. Yanikomeroglu, J.S. Thompson, On the feasibility of wireless shadowing correlation models. IEEE Trans.Veh. Technol. 59 (9), 4222–4236 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Thrun, Y. Liu, Multi-robot SLAM with sparse extended information filers, in Robotics Research (Springer, Berlin, 2005), pp. 254–266Google Scholar
  33. 33.
    M.P. Vitus, W. Zhang, A. Abate, J. Hu, C.J. Tomlin, On efficient sensor scheduling for linear dynamical systems. Automatica 48, 2482–2493 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Z. Wang, E.K. Tameh, A.R. Nix, Joint shadowing process in urban peer-to-peer radio channels. IEEE Trans. Veh. Technol. 57 (1), 52–64 (2008). ISSN: 0018-9545. doi: 10.1109/TVT.2007.904513
  35. 35.
    J.L. Williams, J.W. Fisher, A.S. Willsky, Approximate dynamic programming for communication-constrained sensor network management. IEEE Trans. Signal Process. 55 (8), 4300–4311 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Wymeersch, J. Lien, M.Z. Win, Cooperative localization in wireless networks. Proc. IEEE 97 (2), 427–450 (2009). ISSN: 0018-9219. doi: 10.1109/JPROC.2008.2008853
  37. 37.
    Y. Yan, Y. Mostofi, Impact of localization errors on wireless channel prediction in mobile robotic networks, in IEEE Globecom, Workshop on Wireless Networking for Unmanned Autonomous Vehicles, December 2013Google Scholar
  38. 38.
    M. Zavlanos, M. Egerstedt, G. Pappas, Graph-theoretic connectivity control of mobile robot networks. Proc. IEEE 99 (9), 1525–1540 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Zhang, R. Raulefs, Multi-agent flocking with noisy anchor-free localization, in 11th International Symposium on Wireless Communications Systems (ISWCS) (2014), pp. 927–933Google Scholar
  40. 40.
    S. Zhang et al., System-level performance analysis for Bayesian cooperative positioning: from global to local, in International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2013, pp. 1–10Google Scholar
  41. 41.
    S. Zhang, M. Fröhle, H. Wymeersch, A. Dammann, R. Raulefs, Location-aware formation control in swarm navigation, in 2015 IEEE Globecom Workshops (2015), pp. 1–6. doi:  10.1109/GLOCOMW.2015.7414165
  42. 42.
    S. Zhang, R. Raulefs, A. Dammann, Localization-driven formation control for swarm return-to-base application, in European Signal Processing, 2016 IEEE/EURASIP Conference on (EUSIPCO), August 2016Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Signals and SystemsChalmers University of TechnologyGothenburgSweden
  2. 2.Distributed Systems Group at the Department of Electrical Engineering and AutomationSchool of Electrical Engineering, Aalto UniversityEspooFinland
  3. 3.German Aerospace Center (DLR), Institute of Communications and Navigation Communications SystemsOberpfaffenhofen-WesslingGermany

Personalised recommendations