Skip to main content

Functional Nanomaterials for Transparent Electrodes

  • Chapter
  • First Online:
  • 2273 Accesses

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

In recent years, extensive progress has been made in the development of primary and applied aspects of fabrication of transparent conductive electrodes especially in flexible, stretchable, low-cost, and lightweight electrode materials for the enhancement of energy generation devices. Fabrication of high-performance transparent conductive flexible plastic is necessary for industrial-scale manufacturing with an extensive range of applications. Transparent electrodes (TE’s) are optically transparent to visible light and are electrically conductive. These qualities are important for many renewable energy conversion processes. As transparent electrodes, they are widely used in industry, especially in optoelectronic devices. TE’s are essential components for touch panels, organic photovoltaic (OPV) cells, liquid crystal displays (LCDs), and organic light-emitting diodes (OLEDs). Functionalized nanomaterials having the characteristic properties such as flexible, stretchable, and lightweight-based TE’s are promising substitutes for commonly used indium tin oxide (ITO)-based TE’s for future flexible optoelectronic devices. This chapter broadly summarizes recent developments in the fabrication, properties, modification, patterning, and integration of functionalized nanomaterials for the applications of optoelectronic devices. Their challenges and potential applications, such as in touch panels, optoelectronic devices, liquid crystal displays, and photovoltaic cells, are discussed in detail. Despite many challenges, nanomaterials such as carbon nanotube and graphene TE’s have exhibited various applications in optoelectronic devices and some commercially available products such as touch panels of smartphones. An account of recent developments in the fabrication, performance, and significant opportunities for the industrially used transparent conductive electrode, followed by a brief introduction, is provided.

B.N. Chandrashekar and A.S. Smitha both have equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692

    Article  CAS  Google Scholar 

  2. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6:809–817

    Article  CAS  Google Scholar 

  3. Layani M, Kamyshnya A, Magdassi S (2014) Transparent conductors composed of nanomaterials. Nanoscale 6:5581–5591

    Article  CAS  Google Scholar 

  4. Cheng T, Zhang Y, Lai W-Y, Huang W (2015) Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater 27:3349–3376

    Article  CAS  Google Scholar 

  5. Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 25:52–57

    Article  CAS  Google Scholar 

  6. Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22:3558–3563

    Article  CAS  Google Scholar 

  7. Ding ZQ, Zhu YP, Branford-White C, Sun K, Um-I-Zahra S, Quan J, Nie HL, Zhu LM (2014) Self-assembled transparent conductive composite films of carboxylated multi-walled carbon nanotubes/poly(vinyl alcohol) electrospun nanofiber mats. Mater Lett 128:310–313

    Article  CAS  Google Scholar 

  8. McCarthy MA, Liu B, Donoghue EP, Kravchenko I, Kim DY, So F, Rinzler AG (2011) Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332:570–573

    Article  CAS  Google Scholar 

  9. Sagar RUR, Zhang XZ, Xiong CY, Yu Y (2014) Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon 76:64–70

    Article  CAS  Google Scholar 

  10. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  11. Girtan M, Vlad A, Mallet R, Bodea MA, Pedarnig JD, Stanculescu A, Mardare D, Leontie L, Antohe S (2013) On the properties of aluminium doped zinc oxide thin films deposited on plastic substrates from ceramic targets. Appl Surf Sci 274:306–313

    Article  CAS  Google Scholar 

  12. Chen T–H, Chen T–Y (2015) Effects of annealing temperature on properties of Ti-Ga-doped ZnO films deposited on flexible substrates. Nanomaterials 5:1831–1839

    Article  CAS  Google Scholar 

  13. Lee D, Pan H, Ko SH, Park HK, Kim E (2012) Grigoropoulos, C.P. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles. Appl Phys A 107:161–171

    Article  CAS  Google Scholar 

  14. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3:1767–1774

    Article  CAS  Google Scholar 

  15. Zhang YY, Ronning F, Gofryk K, Mara NA, Haberkorn N, Zou GF, Wang HY, Lee JH, Bauer E, McCleskey TM, Burell AK, Civale L, Zhu YT, Jia Q (2012) Aligned carbon nanotubes sandwiched in epitaxial NbC film for enhanced superconductivity. Nanoscale 4:2268–2271

    Article  CAS  Google Scholar 

  16. Lee D, Paeng D, Park HK, Grigoropoulos CP (2014) Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS Nano 8:9807–9814

    Article  CAS  Google Scholar 

  17. Liu YK, Sie YY, Liu CA, Lee MT (2015) A novel laser direct writing system integrated with A & F XXY alignment platform for rapid fabrication of flexible electronics. Smart Sci 3:87–91

    Article  Google Scholar 

  18. Ge ZB, Wu ST (2008) Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays. Appl Phys Lett 93:121104 (5 pages)

    Google Scholar 

  19. Kim SH, Park JD, Lee KD (2006) Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display. Nanotechnology 17:4436–4438

    Article  CAS  Google Scholar 

  20. Lee MS, Lee K, Kim SY, Lee H, Park J, Choi KH, Kim HK, Kim DG, Lee DY, Nam S, Park J-U (2013) High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett 13:2814–2821

    Article  CAS  Google Scholar 

  21. Song M, You DS, Lim K, Park S, Jung S, Kim CS, Kim DH, Kim DG, Kim JK, Park J, Kang Y-C, Heo J, Jin S-H, Park JH, Kang J-W (2013) Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv Funct Mater 23:4177–4184

    Article  CAS  Google Scholar 

  22. Yao HF, Sun JL, Liu W, Sun HS (2007) Effect of a magnetic field on the preparation of silver nanowires using solid electrolyte thin films. J Mater Sci Technol 23:39–42

    Article  CAS  Google Scholar 

  23. Eom H, Lee J, Pichitpajongkit A, Amjadi M, Jeong JH, Lee E, Lee JY, Park I (2014) Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization. Small 10:4171–4181

    CAS  Google Scholar 

  24. Jewell S, Kimball S (2014) Mineral commodity summaries. US Geological Survey, Reston, VA, USA

    Google Scholar 

  25. Cui F, Yu Y, Dou LT, Sun JW, Yang Q, Schildknecht C, Schierle-Arndt K, Yang PD (2015) Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett 15:7610–7615

    Article  CAS  Google Scholar 

  26. Ye SR, Rathmell AR, Stewart IE, Ha YC, Wilson AR, Chen ZF, Wiley BJ (2014) A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem Commun 50:2562–2564

    Article  CAS  Google Scholar 

  27. Han S, Hong S, Ham J, Yeo J, Lee J, Kang B, Lee P, Kwon J, Lee SS, Yang MY, Ko SH (2014) Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26:5808–5814

    Article  CAS  Google Scholar 

  28. Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718

    Article  CAS  Google Scholar 

  29. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  30. Lee S, Jo G, Kang S-J, Wang G, Choe M, Park W, Kim D-Y, Kahng YH, Lee T (2011) Enhanced charge injection in pentacene field-effect transistors with graphene electrodes. Adv Mater 23:100–105

    Article  CAS  Google Scholar 

  31. Ji Y, Lee S, Cho B, Song S, Lee T (2011) Flexible organic memory devices with multilayer graphene electrodes. ACS Nano 5:5995–6000

    Article  CAS  Google Scholar 

  32. Wang G, Kim Y, Choe M, Kim T-W, Lee T (2011) A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv Mater 23:755–760

    Article  CAS  Google Scholar 

  33. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Özyilmaz B, Jong-Hyun Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  CAS  Google Scholar 

  34. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708

    Article  Google Scholar 

  35. Jo G, Choe M, Cho C-Y, Kim JH, Park W, Lee S, Hong W-K, Kim T-W, Park S-J, Hong BH, Kahng YH, Lee T (2010) Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 21:175201–175206

    Google Scholar 

  36. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4:43–48

    Article  CAS  Google Scholar 

  37. Lee JM, Choung JW, Yi J, Lee DH, Samal M, Yi DK, Lee C-H, Yi G-C, Paik U, Rogers JA, Park WI (2010) Vertical pillar-superlattice array and graphene hybrid light emitting diodes. Nano Lett 10:2783–2788

    Article  CAS  Google Scholar 

  38. Choe M, Lee BH, Jo G, Park J, Park W, Lee S, Hong W-K, Seong M-J, Kahng YH, Lee K, Lee T (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron 11:1864–1869

    Article  CAS  Google Scholar 

  39. Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Article  CAS  Google Scholar 

  40. Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10:4328–4334

    Article  CAS  Google Scholar 

  41. Thiele S, Reina A, Healey P, Kedzierski J, Wyatt P, Hsu P-L, Keast C, Schaefer J, Kong J (2010) Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21:015601(1)–015601(9)

    Google Scholar 

  42. Wei D, Liu Y (2010) Controllable synthesis of graphene and its applications. Adv Mater 22:3225–3241

    Article  CAS  Google Scholar 

  43. Kahng YH, Lee S, Choe M, Jo G, Park W, Yoon J, Hong W-K, Cho C-H, Lee B H, Lee T (2011) A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks. Nanotechnology 22:045706 (9 pp)

    Google Scholar 

  44. Kim KK, Reina A, Shi Y, Park H, Li L-J, Lee Y H, Kong J (2010) Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21:285205 (6 pp)

    Google Scholar 

  45. Guo B, Fang L, Zhang B, Gong JR (2011) Graphene doping: a review. Insci J 1:80–89

    Article  CAS  Google Scholar 

  46. Jo G, Na S-I, Oh S-H, Lee S, Kim T-S, Wang G, Choe M, Park W, Yoon J, Kim D-Y, Kahng YH, Lee T (2010) Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl Phys Lett 97:213301–213303

    Article  CAS  Google Scholar 

  47. Shi Y, Kim KK, Reina A, Hofmann M, Li L-J, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4:2689–2694

    Article  CAS  Google Scholar 

  48. Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, Song YI, Hong BH, Ahn J-H (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10:490–493

    Article  CAS  Google Scholar 

  49. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363

    Article  CAS  Google Scholar 

  50. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911

    Article  CAS  Google Scholar 

  51. Ponnamma D, Sadasivuni KK, Wan C, Thomas S, AlMa’adeed MA (eds) (2016) Flexible and stretchable electronic composites. Springer, Berlin

    Google Scholar 

  52. Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23:2779–2795

    Article  CAS  Google Scholar 

  53. Guo CX, Guai GH, Li CM (2011) Graphene based materials: enhancing solar energy harvesting. Adv Energy Mater 1:448–452

    Article  CAS  Google Scholar 

  54. Zhu Y, Sun Z, Yan Z, Jin Z, Tour JM (2011) Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 5:6472–6479

    Article  CAS  Google Scholar 

  55. Liu Y, Chang Q, Huang L (2013) Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. J Mater Chem C 1:2970–2974

    Article  CAS  Google Scholar 

  56. Choi H, Park SH (2004) Seedless growth of free-standing copper nanowires by chemical vapor deposition. J Am Chem Soc 126:6248–6249

    Article  CAS  Google Scholar 

  57. Haase D, Hampel S, Leonhardt A, Thomas J, Mattern N, Buchner B (2007) Facile one-step-synthesis of carbon wrapped copper nanowires by thermal decomposition of copper(II)-acetylacetonate. Surf Coat Technol 201:9184–9188

    Article  CAS  Google Scholar 

  58. Khalil A, Hashaikeh R, Jouiad M (2014) Synthesis and morphology analysis of electrospun copper nanowires. J Mater Sci 49:3052–3065

    Article  CAS  Google Scholar 

  59. Zang WL, Li P, Fu YM, Xing LL, Xue XY (2015) Hydrothermal synthesis of Co-ZnO nanowire array and its application as piezo-driven self-powered humidity sensor with high sensitivity and repeatability. RSC Adv 5:84343–84349

    Article  CAS  Google Scholar 

  60. Xu P, Chen WZ, Wang Q, Zhu TS, Wu MJ, Qiao JL, Chen ZW, Zhang JJ (2015) Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Adv 5:6195–6206

    Article  CAS  Google Scholar 

  61. Panciera F, Chou YC, Reuter MC, Zakharov D, Stach EA, Hofmann S, Ross FM (2015) Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nat Mater 14:820–825

    Article  CAS  Google Scholar 

  62. Zhu Z, Mankowski T, Balakrishnan K, Shikoh AS, Touati F, Benammar MA, Mansuripur M, Falco CM (2015) Ultrahigh aspect ratio copper-nanowire-based hybrid transparent conductive electrodes with PEDOT:PSS and reduced graphene oxide exhibiting reduced surface roughness and improved stability. ACS Appl Mater Interfaces 7:16223–16230

    Article  CAS  Google Scholar 

  63. Guo H, Lin N, Chen Y, Wang Z, Xie Q, Zheng T, Gao N, Li S, Kang J, Cai D, Peng D-L (2013) Copper nanowires as fully transparent conductive electrodes. Sci Rep 3:2323 (1–8)

    Google Scholar 

  64. He T, Xie A, Reneker DH, Zhu YA (2014) tough and high-performance transparent electrode from a scalable and transfer-free method. ACS Nano 8:4782–4789

    Article  CAS  Google Scholar 

  65. Chen TG, Huang BY, Liu HW, Huang YY, Pan HT, Meng HF, Yu PC (2012) Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon hybrid photovoltaics. ACS Appl Mater Interfaces 4:6849–6856

    Article  CAS  Google Scholar 

  66. Chung CH, Song TB, Bob B, Zhu R, Duan HS, Yang Y (2012) Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. Adv Mater 24:5499–5504

    Article  CAS  Google Scholar 

  67. Hsun-Chen Chu H-C, Yen-Chen Chang Y-C, Yow Lin Y, Shu-Hao Chang S-H, Wei-Chung Chang W C, Li G-A, Tuan H-Y (2016) Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Appl Mater Interfaces 8:13009–13017

    Google Scholar 

  68. Stewart IE, Rathmell AR, Yan L, Ye SR, Flowers PF, You W, Wiley BJ (2014) Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 6:5980–5988

    Article  CAS  Google Scholar 

  69. Li SJ, Chen YY, Huang LJ, Pan DC (2014) Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg Chem 53:4440–4444

    Article  CAS  Google Scholar 

  70. Akter T, Kim WS (2012) Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl Mater Interfaces 4:1855–1859

    Article  CAS  Google Scholar 

  71. Celle C, Mayousse C, Moreau E, Basti H, Carella A, Simonato JP (2012) Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 5:427–433

    Article  CAS  Google Scholar 

  72. Im H-G, Jung S-H, Jin J, Lee D, Lee J, Lee D, Lee J-Y, Kim I-D, Bae B-S (2014) Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano 8:10973–10979

    Article  CAS  Google Scholar 

  73. Kang S, Kim T, Cho S, Lee Y, Choe A, Walker B, Ko SJ, Kim JY, Ko H (2015) Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett 15:7933–7942

    Article  CAS  Google Scholar 

  74. Garnett EC, Cai WS, Cha JJ, Mahmood F, Connor ST, Christoforo MG, Cui Y, McGehee MD, Brongersma ML (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11:241–248

    Article  CAS  Google Scholar 

  75. Langley DP, Lagrange M, Giusti G, Jiménez C, Bréchet Y, Nguyen ND, Bellet D (2012) Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 6:13535–13543

    Article  CAS  Google Scholar 

  76. Hu LB, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963

    Article  CAS  Google Scholar 

  77. Tokuno T, Nogi M, Karakawa M, Jiu JT, Nge TT, Aso Y, Suganuma K (2011) Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 4:1215–1222

    Article  CAS  Google Scholar 

  78. Song JZ, Li JH, Xu JY, Zeng HB (2014) Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett 14:6298–6305

    Article  CAS  Google Scholar 

  79. Stortini AM, Moretto LM, Mardegan A, Ongaro M, Ugo P (2015) Arrays of copper nanowire electrodes: preparation, characterization and application as nitrate sensor. Sens Actuators B 207:186–192

    Article  CAS  Google Scholar 

  80. Rowell MW, McGehee MD (2011) Transparent electrode requirements for thin film solar cell modules. Energy Environ Sci 4:131–134

    Article  CAS  Google Scholar 

  81. Wang J, Jiu J, Araki T, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K (2015) Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors. Nano-Micro Lett 7:51–58

    Article  CAS  Google Scholar 

  82. Liu C-H, Yu X (2011) Silver nanowire-based transparent, flexible, and conductive thin film, Nanoscale Res Lett 6:75 (1–8)

    Google Scholar 

  83. Gutoff EB, Cohen ED (2006) Coating and drying defects: troubleshooting operating problems. Wiley, New York

    Book  Google Scholar 

  84. Deng B, Hsu P-C, Chen G, Chandrashekar BN, Liao L, Ayitimuda Z, Wu J, Guo Y, Lin L, Zhou Y, Aisijiang M, Xie Q, Cui Y, Liu Z, Peng H (2015) Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett 15:4206–4213

    Article  CAS  Google Scholar 

  85. Jeong CW, Nair P, Khan M, Lundstrom M, Alam MA (2011) Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett 11:5020–5025

    Article  CAS  Google Scholar 

  86. Peng H, Dang W, Cao J, Chen Y, Wu D, Zheng W, Li H, Shen Z-X, Liu Z (2012) Topological insulator nanostructures for near infrared transparent flexible electrodes. Nat Chem 4:281

    Article  CAS  Google Scholar 

  87. An BW, Hyun BG, Kim S-Y, Kim M, Lee M-S, Lee K, Koo JB, Chu HY, Bae B-S, Park J-U (2014) Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett 14:6322–6328

    Article  CAS  Google Scholar 

  88. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  89. Liu W-B, Pei S, Du J, Liu B, Gao L, Su Y, Liu C, Cheng H-M (2011) Additive-free dispersion of single-walled carbon nanotubes and its application for transparent conductive films. Adv Funct Mater 21:2330–2337

    Article  CAS  Google Scholar 

  90. Chen Z, Kobashi K, Rauwald U, Booker R, Fan H, Hwang W-F, Tour JM (2006) Soluble ultra-short single-walled carbon nanotubes. J Am Chem Soc 128:10568–10571

    Article  CAS  Google Scholar 

  91. Asada Y, Miyata Y, Ohno Y, Kitaura R, Sugai T, Mizutani T, Shinohara H (2010) High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv Mater 22:2698–2701

    Article  CAS  Google Scholar 

  92. Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695

    Google Scholar 

  93. Wang Y, Di CA, Liu YQ, Kajiura H, Ye SH, Cao LC, Wei DC, Zhang HL, Li YM, Noda K (2008) Optimizing single-walled carbon nanotube films for applications in electroluminescent devices. Adv Mater 20:4442–4449

    Article  CAS  Google Scholar 

  94. Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv Mater 11:1354

    Article  CAS  Google Scholar 

  95. Salzmann CG, Llewellyn SA, Tobias G, Ward MAH, Huh Y, Green MLH (2007) The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv Mater 19:883–887

    Article  CAS  Google Scholar 

  96. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186

    Article  CAS  Google Scholar 

  97. Liu Q, Ren W, Chen ZG, Wang DW, Liu B, Yu B, Li F, Cong H, Cheng HM (2008) Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. ACS Nano 2:1722–1728

    Google Scholar 

  98. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276

    Article  CAS  Google Scholar 

  99. Graupner R, Abraham J, Vencelova A, Seyller T, Hennrich F, Kappes MM, Hirsch A, Ley L (2003) Doping of single-walled carbon nanotube bundles by Brønsted acids. Phys Chem Chem Phys 5:5472–5476

    Article  CAS  Google Scholar 

  100. Geng HZ, Kim KK, Song C, Xuyen NT, Kim SM, Park KA, Lee DS, An KH, Lee YS, Chang Y, Lee YJ, Choi JY, Benayad A, Lee YH (2008) Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment. J Mater Chem 18:1261–1266

    Article  CAS  Google Scholar 

  101. Hu L, Hecht DS, Gruner G (2004) Percolation in transparent and conducting carbon nanotube networks. Nano Lett 4:2513–2517

    Article  CAS  Google Scholar 

  102. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotech 3:206–209

    Article  CAS  Google Scholar 

  103. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, FirsovA A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  104. Chabot V, Higgins D, Yu A, Xiao X, Chena Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596

    Article  CAS  Google Scholar 

  105. Chandrashekar BN, Deng B, Smitha AS, Chen Y, Tan C, Zhang H, Peng H, Liu Z (2015) Roll-to-roll green transfer of CVD graphene onto plastic for transparent and flexible triboelectric nanogenerator. Adv Mater 27:5210–5216

    Article  CAS  Google Scholar 

  106. Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23:112001 (19 pp)

    Google Scholar 

  107. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4:611–622

    Article  CAS  Google Scholar 

  108. Sadasivuni KK, Kafy A, Zhai L, Ko H-U, Mun S, Kim J (2015) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002

    Google Scholar 

  109. Sheraw CD, Zhou L, Huang JR, Gundlach DJ, Jackson TN, Kane MG, Hill IG, Hammond MS, Campi J, Greening BK, Francl J, West J (2002) Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl Phys Lett 80:1088–1090

    Article  CAS  Google Scholar 

  110. Nordendorf G, Kasdorf O, Kitzerow HS, Liang Y, Feng X, Muellen K (2010) Liquid crystal addressing by graphene electrodes made from graphene oxide. Jpn J Appl Phys 49:100206-1–100206-3

    Google Scholar 

  111. Reshak AH, Shahimin MM, Juhari N, Suppiah S (2013) Electrical behaviour of MEH-PPV based diode and transistor. Prog Biophys Mol Biol 113:289–294

    Article  CAS  Google Scholar 

  112. Yuan J, Luna A, Neri W, Zakri C, Schilling T, Colin A, Poulin P (2015) Graphene liquid crystal retarded percolation for new high-k materials. Nat Commun 6:8700 (1–8)

    Google Scholar 

  113. Scott JC, Kaufman JH, Brock PJ, DiPietro R, Salem J, Goitia JA (1996) Degradation and failure of MEH-PPV light-emitting diodes. J Appl Phys 79:2745–2752

    Article  CAS  Google Scholar 

  114. Bremer M, Naemura S, Tarumi K (1998) Model of ion solvation in liquid crystal cells. Jpn J Appl Phys 37:L88

    Article  CAS  Google Scholar 

  115. Roy-Mayhew JD, Aksay IA (2014) Graphene materials and their use in dye-sensitized solar cells. Chem Rev 114:6323–6348

    Article  CAS  Google Scholar 

  116. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174

    Article  CAS  Google Scholar 

  117. Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2:307–312

    Article  CAS  Google Scholar 

  118. Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748

    Article  CAS  Google Scholar 

  119. Shim J-P, Choe M, Jeon S-R, Seo D, Lee T, Lee D-S (2011) InGaN-based p–i–n solar cells with graphene electrodes. Appl Phys Express 4:052302–052302–052302–052303

    Article  CAS  Google Scholar 

  120. Arco LGD, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  CAS  Google Scholar 

  121. Huang J-H, Fang J-H, Liu C-C, Chu C-W (2011) Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics. ACS Nano 5:6262–6271

    Article  CAS  Google Scholar 

  122. Kim JK, Kim SJ, Park MJ, Bae S, Cho S-P, Du QG, Wang DH, Park JH, Hong BH (2014) Surface-engineered graphene quantum dots incorporated into polymer layers for high performance organic photovoltaics. Sci Rep 5:14276

    Article  CAS  Google Scholar 

  123. Roy A, Park SH, Cowan S, Tong MH, Cho S, Lee K, Heeger AJ (2009) An inverted organic solar cell with an ultrathin Ca electron transporting layer and MoO3 hole-transporting layer. Appl Phys Lett 95:153304–153309

    Article  CAS  Google Scholar 

  124. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225

    Article  CAS  Google Scholar 

  125. Cho S, Seo JH, Lee K, Heeger AJ (2009) Enhanced performance of fullerene n-channel field-effect transistors with titanium sub-oxide injection layer. Adv Funct Mater 19:1459–1464

    Article  CAS  Google Scholar 

  126. Wan X, Long G, Huang L, Chen Y (2011) Graphene—a promising material for organic photovoltaic cells. Adv Mater 23:5342–5358

    Article  CAS  Google Scholar 

  127. He Z, Zhong C, Huang X, Wong W, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643

    Article  CAS  Google Scholar 

  128. Fan FR, Lin L, Zhu G, Wu WZ, Zhang R, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bananakere Nanjegowda Chandrashekar , K. Byrappa or Chun Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chandrashekar, B.N. et al. (2017). Functional Nanomaterials for Transparent Electrodes. In: Ponnamma, D., Sadasivuni, K., Cabibihan, JJ., Al-Maadeed, MA. (eds) Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-50424-7_13

Download citation

Publish with us

Policies and ethics