Advertisement

Energy Harvesting: Breakthrough Technologies Through Polymer Composites

  • Saquib AhmedEmail author
  • Sankha Banerjee
  • Udhay Sundar
  • Hector Ruiz
  • Sanjeev Kumar
  • Ajith Weerasinghe
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Polymer composites have been extensively studied in the last few years toward application in solar-, thermoelectric-, and vibration-based energy harvesting technologies. Of late, polymer nanocomposites are being investigated successfully in hybrid organic–inorganic devices, in bulk heterojunction devices incorporating all flavors of solar cells, and through the perovskite structures. In the thermoelectric power generation arena, abundance of raw materials, lack of toxicity, and the feasibility for large-area applications are all advantages that polymer nanocomposites boast over their inorganic predecessors. Within the vibration-based energy systems, polymer nanocomposites are being used as the magnets within the harvester devices; they offer low rigidity and easy processing (spin coating, drop casting, and molding). Also, recent work has focused on utilizing polymer ceramic nanocomposites as electrostatic energy storage materials. Lastly, polymer-based piezoelectric materials can be used directly as an active material in different transduction applications.

Keywords

Polymer nanocomposite Hybrid organic–inorganic solar cells Thermoelectric power generation Seebeck Piezoelectric Transduction Dielectric storage Piezocomposites Energy harvesting 

References

  1. 1.
    Service RF (2005) Is it time to shoot for the sun? Science 309(5734):548–551CrossRefGoogle Scholar
  2. 2.
    Potočnik J (2007) Renewable energy sources and the realities of setting an energy agenda. Science 315(5813):810–811CrossRefGoogle Scholar
  3. 3.
    Schiermeier Q, Tollefson J, Scully T, Witze A, Morton O (2008) Energy alternatives: electricity without carbon. Nature 454:816–823CrossRefGoogle Scholar
  4. 4.
    International Energy Agency (2010) PV environmental, health and safety activities. Photovoltaic Power systems Programme Google Scholar
  5. 5.
    Metz A et al (2015) International technology roadmap for photovoltaicGoogle Scholar
  6. 6.
    Osborne M (2013) First solar hits cost reduction milestone. PV techGoogle Scholar
  7. 7.
    Department of Energy. Sunshot initiative mission. Office of Energy Efficiency and Renewable EnergyGoogle Scholar
  8. 8.
    Bailie CD, Christoforo MG, Mailoa JP, Bowring AR, Unger EL, Nguyen WH, Burschka J, Pellet N, Lee JZ, Gratzel M, Noufi R, Buonassisi T, Salleo A, McGehee MD (2015) Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci 8(3):956–963CrossRefGoogle Scholar
  9. 9.
    Green M (2003) Third generation photovoltaics: advanced solar energy conversion. Springer series in photonics. Springer, BerlinGoogle Scholar
  10. 10.
    Eriksson SK, Josefsson I, Ellis H, Amat A, Pastore M, Oscarsson J, Lindblad R, Eriksson AIK, Johansson EMJ, Boschloo G, Hagfeldt A, Fantacci S, Odelius M, Rensmo H (2016) Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT. Phys Chem Chem Phys 18(1):252–260CrossRefGoogle Scholar
  11. 11.
    Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51(47):11700–11721CrossRefGoogle Scholar
  12. 12.
    Wang ZL (2012) Progress in piezotronics and piezo-phototronics. Adv Mater 24(34):4632–4646CrossRefGoogle Scholar
  13. 13.
    Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRefGoogle Scholar
  14. 14.
    Liu W, Yan Z, Chen G, Ren Z (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1(1):42–56CrossRefGoogle Scholar
  15. 15.
    Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639CrossRefGoogle Scholar
  16. 16.
    Chandrakasan AP, Verma N, Daly DC (2008) Ultralow-power electronics for biomedical applications. Annu Rev Biomed Eng 10(1):247–274CrossRefGoogle Scholar
  17. 17.
    Leonov V (2011) Human machine and thermoelectric energy scavenging for wearable devices. ISRN Renew Energy 2011:11Google Scholar
  18. 18.
    Culebras M, Gómez CM, Cantarero A (2014) Review on polymers for thermoelectric applications. Materials 7(9):6701CrossRefGoogle Scholar
  19. 19.
    Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JML, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4(1):28–36CrossRefGoogle Scholar
  20. 20.
    Wang X (2012) Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1(1):13–24CrossRefGoogle Scholar
  21. 21.
    Mathúna CÓ, Donnell TO, Martinez-Catala RV, Rohan J, O’Flynn B (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3):613–623CrossRefGoogle Scholar
  22. 22.
    Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486CrossRefGoogle Scholar
  23. 23.
    Bouendeu E, Greiner A, Smith PJ, Korvink JG (2011) A low-cost electromagnetic generator for vibration energy harvesting. IEEE Sens J 11(1):107–113CrossRefGoogle Scholar
  24. 24.
    Mitcheson PD, Miao P, Stark BH, Yeatman EM, Holmes AS, Green TC (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators, A 115(2–3):523–529CrossRefGoogle Scholar
  25. 25.
    Ramsay MJ, Clark WW (2001) Piezoelectric energy harvesting for bio-MEMS applications. In: SPIE Proceedings 4332Google Scholar
  26. 26.
    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336CrossRefGoogle Scholar
  27. 27.
    Barber P, Balasubramanian S, Anguchamy J, Gong S, Wibowo A, Gao H, Ploehn HJ, Loye HZ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697CrossRefGoogle Scholar
  28. 28.
    Siddabattuni S, Schuman TP (2014) Polymer ceramic nanocomposite dielectrics for advanced energy storage, in polymer composites for energy harvesting, conversion, and storage. Am Chem Soc 1161:165–190Google Scholar
  29. 29.
    Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci Part B Polym Phys 49(20):1421–1429CrossRefGoogle Scholar
  30. 30.
    Siddabattuni S, Schuman TP, Dogan F (2011) Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control. Mater Sci Eng 176(18):1422–1429CrossRefGoogle Scholar
  31. 31.
    Nayak S, Rahaman M, Pandey AK, Setua DK, Chaki TK, Kastgir D (2013) Development of poly (dimethylsiloxane)—titania nanocomposites with controlled dielectric properties: effect of heat treatment of titania on electrical properties. J Appl Polym Sci 127(1):784–796CrossRefGoogle Scholar
  32. 32.
    Tang H, Ma Z, Zhong J, Yang J, Zhao R, Liu X (2011) Effect of surface modification on the dielectric properties of PEN nanocomposites based on double-layer core/shell-structured BaTiO3 nanoparticles. Colloids Surf A 384(1–3):311–317CrossRefGoogle Scholar
  33. 33.
    Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43(11):3940–3951CrossRefGoogle Scholar
  34. 34.
    Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15(6):941–951CrossRefGoogle Scholar
  35. 35.
    Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using vibration-based power generation. IEEE J Solid-State Circuits 33(5):687–695CrossRefGoogle Scholar
  36. 36.
    Alfadhel A, Li B, Zaher A, Yassine O, Kosel J (2014) A magnetic nanocomposite for biomimetic flow sensing. Lab Chip 14(22):4362–4369Google Scholar
  37. 37.
    Alnassar M, Alfadhel A, Ivanov YP, Kosel J (2015) Magnetoelectric polymer nanocomposite for flexible electronics. J Appl Phys 117(17):17D711CrossRefGoogle Scholar
  38. 38.
    Zheng JC (2008) Recent advances on thermoelectric materials. Front Phys China 3(3):269–279CrossRefGoogle Scholar
  39. 39.
    Khaled SR, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRefGoogle Scholar
  40. 40.
    Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12(6):1129–1141CrossRefGoogle Scholar
  41. 41.
    Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504CrossRefGoogle Scholar
  42. 42.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185CrossRefGoogle Scholar
  43. 43.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRefGoogle Scholar
  44. 44.
    Thompson BC, Frecher JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77CrossRefGoogle Scholar
  45. 45.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(07):1924–1945CrossRefGoogle Scholar
  46. 46.
    Carsten D, Dyakonov V (2010) Polymer—fullerene bulk heterojunction solar cells. Rep Prog Phys 73(9):096401CrossRefGoogle Scholar
  47. 47.
    Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302CrossRefGoogle Scholar
  48. 48.
    Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22(20):E135–E138CrossRefGoogle Scholar
  49. 49.
    Krebs FC, Tromholt T, Jørgensen M (2010) Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2(6):873–886CrossRefGoogle Scholar
  50. 50.
    Koeppe R, Sariciftci NS (2006) Photoinduced charge and energy transfer involving fullerene derivatives. Photochem Photobiol Sci 5(12):1122–1131CrossRefGoogle Scholar
  51. 51.
    Kumar JSD, Das S (1997) Photoinduced electron transfer reactions of amines: synthetic applications and mechanistic studies. Res Chem Intermed 23(8):755–800CrossRefGoogle Scholar
  52. 52.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11(5):374–380CrossRefGoogle Scholar
  53. 53.
    Hashiguchi M, Obata N, Maruyama M, Yeo KS, Ueno T, Ikebe T, Takahashi I, Matsuo Y (2012) FeCl3-mediated synthesis of fullerenyl esters as low-LUMO acceptors for organic photovoltaic devices. Org Lett 14(13):3276–3279CrossRefGoogle Scholar
  54. 54.
    Arkhipov VI, Bassler H (2004) Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Phys Status Solidi A 201(6):1152–1187Google Scholar
  55. 55.
    Gaines GL, O’Neil MP, Svec WA, Niemczyk MP, Wasielewski MR (1991) Photoinduced electron transfer in the solid state: rate vs. free energy dependence in fixed-distance porphyrin-acceptor molecules. J Am Chem Soc 113(2):719–721CrossRefGoogle Scholar
  56. 56.
    Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, Van Hal PA, Janssen RAJ (2002) A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater 12(10):709–712CrossRefGoogle Scholar
  57. 57.
    Winder C, Matt G, Hummelen JC, Janssen RAJ, Sariciftci NS, Brabec CJ (2002) Sensitization of low bandgap polymer bulk heterojunction solar cells. Thin Solid Films 403–404:373–379CrossRefGoogle Scholar
  58. 58.
    Koster LJA, Kuo CY, Yuan MC, Jeng US, Su CJ, Wei KH (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88(9):093511CrossRefGoogle Scholar
  59. 59.
    Soci C, Huang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Photoconductivity of a low-bandgap conjugated polymer. Adv Funct Mater 17(4):632–636CrossRefGoogle Scholar
  60. 60.
    Scharber MC, Dennler M, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794CrossRefGoogle Scholar
  61. 61.
    Mihailetchi VD, Mihailetchi, Van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM (2003) Electron transport in a methanofullerene. Adv Funct Mater 13(1):43–46Google Scholar
  62. 62.
    Singh TB, Marjanović N, Stadler P, Auinger M, Matt GJ, Günes S, Sariciftci NS, Schwödiauer R, Bauer S (2005) Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors. J Appl Phys 97(8):083714CrossRefGoogle Scholar
  63. 63.
    Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61CrossRefGoogle Scholar
  64. 64.
    Yang X, Loos J (2007) Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40(5):1353–1362CrossRefGoogle Scholar
  65. 65.
    Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843CrossRefGoogle Scholar
  66. 66.
    Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14(10):1005–1011CrossRefGoogle Scholar
  67. 67.
    Yang X, van Duren JK, Janssen RA, Michels MA, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37(6):2151–2158CrossRefGoogle Scholar
  68. 68.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRefGoogle Scholar
  69. 69.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRefGoogle Scholar
  70. 70.
    Reyes R, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett 87(8):083506CrossRefGoogle Scholar
  71. 71.
    Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl Phys Lett 86(6):063502CrossRefGoogle Scholar
  72. 72.
    Padinger F, Rittberger RS, Sacriciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88CrossRefGoogle Scholar
  73. 73.
    Sivula K, Ball ZT, Watanabe N, Frecher JMJ (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: fullerene solar cells. Adv Mater 18(2):206–210CrossRefGoogle Scholar
  74. 74.
    Stalmach U, Boer BD, Videlot C, Hutten PFV, Hadziioannou G (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122(23):5464–5472CrossRefGoogle Scholar
  75. 75.
    Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18(5):572–576CrossRefGoogle Scholar
  76. 76.
    Liu R (2014) Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials 7(4):2747CrossRefGoogle Scholar
  77. 77.
    Silva C (2013) Organic photovoltaics: some like it hot. Nat Mater 12(1):5–6Google Scholar
  78. 78.
    Deibel C, Strobel T, Dyakonov V (2010) Role of the charge transfer state in organic donor-acceptor solar cells. Adv Mater 22(37):4097–4111CrossRefGoogle Scholar
  79. 79.
    Bansal N, Reynolds LX, MacLachlan A, Lutz T, Ashraf RS, Zhang W, Nielsen CB, McCulloch I, Rebois DG, Kirchartz T, Hill MS, Molloy KC, Nelson J, Haque SA (2013) Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells. Sci Rep 3:1531CrossRefGoogle Scholar
  80. 80.
    Bhardwaj RK, Kushwaha HS, Gaur J, Upreti T, Bharti V, Gupta V, Chaudhary N, Sharma GD, Banerjee K, Chand S (2012) A green approach for direct growth of CdS nanoparticles network in poly(3-hexylthiophene-2,5-diyl) polymer film for hybrid photovoltaic. Mater Lett 89:195–197CrossRefGoogle Scholar
  81. 81.
    Xia C, Wang N, Kim X (2011) Mesoporous CdS spheres for high-performance hybrid solar cells. Electrochim Acta 56(25):9504–9507CrossRefGoogle Scholar
  82. 82.
    Greaney MJ, Brutchey RL (2012) Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange. ACS Nano 6(5):4222–4230CrossRefGoogle Scholar
  83. 83.
    Schierhorn M, Boettcher SW, Peet JH, Matioli E, Bazan GC, Stuck YGD, Moskovits M (2010) CdSe nanorods dominate photocurrent of hybrid CdSe–P3HT photovoltaic cell. ACS Nano 4(10):6132–6136CrossRefGoogle Scholar
  84. 84.
    Tan ZN, Zhang WQ, Qian DP, Zheng H, Xiao SQ, Yang YP, Zhu T, Xu J (2011) Efficient hybrid infrared solar cells based on P3HT and PbSe nanocrystal quantum dots. Mater Sci Forum 685:38–43CrossRefGoogle Scholar
  85. 85.
    Zhu T, Berger A, Tan Z, Cui D, Xu J, Khanchaitit P, Wang Q (2008) Composition-limited spectral response of hybrid photovoltaic cells containing infrared PbSe nanocrystals. J Appl Phys 104(4):044306CrossRefGoogle Scholar
  86. 86.
    Jangwon S, Kim SJ, Kim WJ, Singh R, Samoc M, Cartwright AN, Prasad PN (2009) Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20(9):095202CrossRefGoogle Scholar
  87. 87.
    Wang Z, Qu S, Zeng X, Zhang C, Shi M, Tan F, Wang Z, Liu J, Hou Y, Teng F, Feng Z (2008) Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells. Polymer 49(21):4647–4651CrossRefGoogle Scholar
  88. 88.
    Feng Y, Yun D, Zhang X, Feng W (2010) Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots bilayer. Appl Phys Lett 96(9):093301CrossRefGoogle Scholar
  89. 89.
    Baeten L, Conings B, Boyen HG, D’Haen J, Hardy A, D’Olieslaeger M, Manca JV, Van Bael MK (2011) Towards efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Adv Mater 23(25):2802–2805CrossRefGoogle Scholar
  90. 90.
    Noori K, Giustino F (2012) Ideal energy-level alignment at the ZnO/P3HT photovoltaic interface. Adv Funct Mater 22(24):5089–5095CrossRefGoogle Scholar
  91. 91.
    Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101(6):063112–063115CrossRefGoogle Scholar
  92. 92.
    Zhu R, Jiang CY, Liu B, Ramakrishna S (2009) Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Adv Mater 21(9):994–1000CrossRefGoogle Scholar
  93. 93.
    Shankar K, Mor GK, Paulose M, Varghese OK, Grimes CA (2008) Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. J Non-Cryst Solids 354(19–25):2767–2771CrossRefGoogle Scholar
  94. 94.
    Ren S, Chang LY, Lim SK, Zhao J, Smith M, Zhao N, Bulović V, Bawendi M, Gradečak S (2011) Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11(9):3998–4002CrossRefGoogle Scholar
  95. 95.
    Yun D, Xia X, Zhang S, Bian Z, Liu R, Huang C (2011) ZnO nanorod arrays with different densities in hybrid photovoltaic devices: fabrication and the density effect on performance. Chem Phys Lett 516(1–3):92–95CrossRefGoogle Scholar
  96. 96.
    Li L (2015) Thermoelectric energy harvesting via piezoelectric material. arXiv.orgGoogle Scholar
  97. 97.
    Paul D (2014) Thermoelectric energy harvesting. In: Fagas G (ed) ICT-energy-concepts towards zero-power information and communication technologyGoogle Scholar
  98. 98.
    LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1–2:26–35Google Scholar
  99. 99.
    Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31(3):188–198CrossRefGoogle Scholar
  100. 100.
    Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51(4):459CrossRefGoogle Scholar
  101. 101.
    DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706CrossRefGoogle Scholar
  102. 102.
    Dubey N, Lecerc M (2011) Conducting polymers: efficient thermoelectric materials. J Polym Sci Part B Polym Phys 49(7):467–475CrossRefGoogle Scholar
  103. 103.
    Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 22(4):535–539CrossRefGoogle Scholar
  104. 104.
    Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114CrossRefGoogle Scholar
  105. 105.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRefGoogle Scholar
  106. 106.
    Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10(6):429–433CrossRefGoogle Scholar
  107. 107.
    Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8(12):4428–4432CrossRefGoogle Scholar
  108. 108.
    Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4(1):513–523CrossRefGoogle Scholar
  109. 109.
    Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D (2012) Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24(7):932–937CrossRefGoogle Scholar
  110. 110.
    Abramson AR, Kim WC, Huxtable ST, Yan H, Wu Y, Majumdar A, Tien CL, Yang P (2004) Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device. J Microelectromech Syst 13(3):505–513CrossRefGoogle Scholar
  111. 111.
    Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24(18):2436–2440CrossRefGoogle Scholar
  112. 112.
    Bubnova O, Krispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362CrossRefGoogle Scholar
  113. 113.
    Kraemer D, Poudel B, Feng HP, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10(7):532–538CrossRefGoogle Scholar
  114. 114.
    Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer—inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841CrossRefGoogle Scholar
  115. 115.
    Zhang B, Sun J, Katz HE, Fang F, Opila RL (2010) Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2(11):3170–3178CrossRefGoogle Scholar
  116. 116.
    Kaiser AB (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep Prog Phys 64(1):1CrossRefGoogle Scholar
  117. 117.
    Carpi F, De Rossi D (2005) Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans Inf Technol Biomed 9(3):295–318CrossRefGoogle Scholar
  118. 118.
    Jun T, Akio T, Kikuko K (1990) Structure and electrical properties of polyacetylene yielding a conductivity of 10 5 S/cm. Jpn J Appl Phys 29(1R):125Google Scholar
  119. 119.
    Taylor PS, Karasz LK, Wilusz E, Lahti PM, Karasz FE (2013) Thermoelectric studies of oligophenylenevinylene segmented block copolymers and their blends with MEH-PPV. Synth Met 185–186:109–114CrossRefGoogle Scholar
  120. 120.
    Shi H, Liu C, Xu J, Song H, Lu B, Jiang F, Zhou W, Zhang G, Jiang Q (2013) Facile fabrication of PEDOT:PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 5(24):12811–12819CrossRefGoogle Scholar
  121. 121.
    Kazmierski TJ (2014) Energy harvesting systems. Springer, BerlinGoogle Scholar
  122. 122.
    Zhu D, Tudor MJ, Beeby SP (2009) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21(2):022001CrossRefGoogle Scholar
  123. 123.
    Dallago E, Danioni A, Marchesi M, Nucita V, Venchi G (2011) A self-powered electronic interface for electromagnetic energy harvester. IEEE Trans Power Electron 26(11):3174–3182CrossRefGoogle Scholar
  124. 124.
    Vullers R, Doms I, Hoof CV, Mertens R (2009) Micropower energy harvesting. Solid-State Electron 53(7):684–693CrossRefGoogle Scholar
  125. 125.
    Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, SiewPingLow Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001CrossRefGoogle Scholar
  126. 126.
    Foisal ARM, Hong C, Chung CS (2012) Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens Actuators, A 182:106–113CrossRefGoogle Scholar
  127. 127.
    Carvalho CMF, Manuel C, Paulino, Veríssimo NFS (2016) CMOS indoor light energy harvesting system for wireless sensing applications. Springer, BerlinGoogle Scholar
  128. 128.
    Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43(11):3940–3951CrossRefGoogle Scholar
  129. 129.
    Beeby SPR, Torah N, Tudor MJ, Glynne-Jones P, Donnell TO, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257CrossRefGoogle Scholar
  130. 130.
    Cook-Chennault Thambi KN, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supplies systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001CrossRefGoogle Scholar
  131. 131.
    Khan MA, Alfadhel A, Kosel J (2016) Magnetic nanocomposite cilia energy harvester. IEEE Trans Magn: 1–4Google Scholar
  132. 132.
    Alfadhel A, Li B, Zaher A, Yassine O, Kosel J (2014) A magnetic nanocomposite for biomimetic flow sensing. Lab Chip 14(22):4362–4369CrossRefGoogle Scholar
  133. 133.
    Zhou B, Xu W, Syed AA, Chau Y, Chen L, Chew B, Yassine O, Wu X, Gao Y, Zhang J, Xiao X, Kosel J, Zhang XX, Yao Z, Wen W (2015) Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip 15(9):2125–2132CrossRefGoogle Scholar
  134. 134.
    Jordan OTL, Ounaies Z (2001) Piezoelectric ceramics characterization. Institute for Computer Applications in Science and Engineering (ICASE)Google Scholar
  135. 135.
    Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818CrossRefGoogle Scholar
  136. 136.
    Scala EP (1996) A brief history of composites in the U.S.—the dream and the success. JOM 48(2):45–48CrossRefGoogle Scholar
  137. 137.
    Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) Piezoelectric properties of ferroelectric PZT-polymer composites. J Phys D Appl Phys 34(4):487CrossRefGoogle Scholar
  138. 138.
    Zhang TY, Kuo CM, Barnett DM, Willis JR (2002) Fracture of piezoelectric ceramics. In: Adv Appl Mech: 147–289Google Scholar
  139. 139.
    Banerjee S, Hennault KAC (2012) An investigation into the influence of electrically conductive particle size on electromechanical coupling and effective dielectric strain coefficients in three phase composite piezoelectric polymers. Compos Part A Appl Sci Manuf 43(9):1612–1619Google Scholar
  140. 140.
    Banerjee S, Hennault KAC (2013) Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J Electroceram: 1–11Google Scholar
  141. 141.
    Banerjee S, Hennault KAC (2011) Influence of Al particle size and lead zirconate titanate (PZT) volume fraction on the dielectric properties of PZT-epoxy-aluminum composites. J Eng Mater Technol 133:041016Google Scholar
  142. 142.
    Rianyoi R, Potong R, Jaitanong N, Yimnirun R, Chaipanich A (2011) Dielectric, ferroelectric and piezoelectric properties of 0–3 barium titanate–Portland cement composites. Appl Phys A 104(2):661–666CrossRefGoogle Scholar
  143. 143.
    Jaitanong N, Chaipanich A, Tunkasiri T (2008) Properties 0–3 PZT–Portland cement composites. Ceram Int 34(4):793–795CrossRefGoogle Scholar
  144. 144.
    Chaipanich A, Jaitanong N, Yimnirun R (2009) Ferroelectric hysteresis behavior in 0–3 PZT-cement composites: effects of frequency and electric field. Ferroelectr Lett 36(3–4):59–66CrossRefGoogle Scholar
  145. 145.
    Huang S, Chang J, Xu R, Liu F, Lu L, Ye Z, Cheng X (2004) Piezoelectric properties of 0–3 PZT/sulfoaluminate cement composites. Smart Mater Struct 13(2):270CrossRefGoogle Scholar
  146. 146.
    Li Z, Zhang D, Wu K (2002) Cement-based 0–3 piezoelectric composites. J Am Ceram Soc 85(2):305–313CrossRefGoogle Scholar
  147. 147.
    Banerjee S, Chennault KC. Influence of Al inclusions and PZT volume fraction on the dielectric and piezoelectric characteristics of three phase PZT-cement-Al composites. In: Advances in Cement Research. Accepted for PublicationGoogle Scholar
  148. 148.
    Banerjee S, Chennault KC (2011) Influence of Al particle size and lead zirconate titanate (PZT) volume fraction on the dielectric properties of PZT-epoxy-aluminum composites. J Eng Mater Technol 133(4):041016CrossRefGoogle Scholar
  149. 149.
    Banerjee S, Du W, Wang L, Chennault KAC (2013) Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J Electroceram 31(1–2):148–158CrossRefGoogle Scholar
  150. 150.
    Banerjee S, Rajesh K, Chennault CAK, Manish C (2013) Multi-walled carbon-nanotube based flexible piezoelectric films with graphene monolayers. Energy Environ Focus 2(3):195–202CrossRefGoogle Scholar
  151. 151.
    Chennault CK, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001CrossRefGoogle Scholar
  152. 152.
    Dang ZM, Fan LZ, Shen Y, Nan CW (2003) Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Mater Sci Eng B 103(2):140–144CrossRefGoogle Scholar
  153. 153.
    Dang ZM, Yao SH, Yuan JK, Bai J (2010) Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites. J Phys Chem C 114(31):13204–13209CrossRefGoogle Scholar
  154. 154.
    Dong B, Li Z (2005) Cement-based piezoelectric ceramic smart composites. Compos Sci Technol 65(9):1363–1371CrossRefGoogle Scholar
  155. 155.
    Frank S, Poncharal P, Wang ZL, De Hee WA (1998) Carbon nanotube quantum resistors. Science 280(5370):1744–1746CrossRefGoogle Scholar
  156. 156.
    Gong H, Zhang Y, Quan J, Che S (2011) Preparation and properties of cement based piezoelectric composites modified by CNTs. Curr Appl Phys 11(3):653–656CrossRefGoogle Scholar
  157. 157.
    Gullapalli H, Vemuru VSM, Kumar A, Mendez AB, Vajtai R, Terrones M, Nagarajaiah S, Ajayan PM (2010) Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6(15):1641–1646CrossRefGoogle Scholar
  158. 158.
    Hong SY, Glasser SP (1999) Alkali binding in cement pastes: part I. The C-S-H phase. Cem Concr Res 29(12):1893–1903CrossRefGoogle Scholar
  159. 159.
    Hosseinzadegan H, Smith AD, Niklaus F, Paussa A, Vaziri S, Fischer AC, Sterner M, Forsberg F, Delin A, Esseni D, Palestri P, Östling M, Lemme MC (2012) Graphene has ultra high piezoresistive gauge factor. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS)Google Scholar
  160. 160.
    Kok SL, White NM, Harris NR (2008) Free-standing thick-film piezoelectric device. Electron Lett 44(4):280–281Google Scholar
  161. 161.
    Kuo DH, Chang CC, Su TY, Wang WK, Lin BY (2001) Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc 21(9):1171–1177CrossRefGoogle Scholar
  162. 162.
    Kymakis E, Stratakis E, Stylianakis MM, Koudoumas E, Fotakis C (2011) Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films 520(4):1238–1241CrossRefGoogle Scholar
  163. 163.
    Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Neto AHC, Crommie MF (2010) Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329(5991):544–547CrossRefGoogle Scholar
  164. 164.
    Li FX, Fang DN, Liu YM (2006) Domain switching anisotropy in poled lead titanate zirconate ceramics under orthogonal electromechanical loading. J Appl Phys 100(8):084101–084106CrossRefGoogle Scholar
  165. 165.
    Li X, Zhang RW, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Quanshui Zheng Q, Ruoff RS, Zhu H (2012) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2:1–6Google Scholar
  166. 166.
    Ma M, Wang X (2009) Preparation, microstructure and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT piezoceramics as rigid piezo-damping materials. Mater Chem Phys 116(1):191–197CrossRefGoogle Scholar
  167. 167.
    Maiti Suin S, Shrivastava NK, Khatua BB (2013) Low percolation threshold in melt-blended PC/MWCNT nanocomposites in the presence of styrene acrylonitrile (SAN) copolymer: preparation and characterizations. Synth Met 165:40–50CrossRefGoogle Scholar
  168. 168.
    Miao X, Tongay S, Hebard AF (2012) Strain-induced suppression of weak localization in CVD-grown graphene. J Phys Condens Matter 24(47):475304CrossRefGoogle Scholar
  169. 169.
    Nagarajan V, Ganpule CS, Nagaraj B, Aggarwal S, Alpay SP, Roytburd AL, Williams ED, Ramesh R (1999) Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films. Appl Phys Lett 75(26):4183–4185CrossRefGoogle Scholar
  170. 170.
    Romasanta L, Hernández M, Manchado ML, Verdejo R (2011) Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res Lett 6(1):1–6CrossRefGoogle Scholar
  171. 171.
    Satish B, Sridevi K, Vijaya MS (2002) Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J Phys D Appl Phys 35(16):2048CrossRefGoogle Scholar
  172. 172.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRefGoogle Scholar
  173. 173.
    Seema A, Dayas KR, Vargheze JM (2007) PVDF-PZT-5H composites prepared by hot press and tape casting techniques. J Appl Polym Sci 106(1):146–151CrossRefGoogle Scholar
  174. 174.
    Sencadas V, Mendez SL, Filho RG, Chinaglia DL, Pouzada AS (2005) Influence of the processing conditions and corona poling on the morphology of β-PVDF. In: Proceedings of 12th International Symposium on Electrets (ISE-12)Google Scholar
  175. 175.
    Senthilkumar R, Sridevi K, Jambunathan V, Vijaya MS (2005) Investigations on ferroelectric PZT-PVDF composites of 0–3 connectivity. Ferroelectrics 325(1):121–130CrossRefGoogle Scholar
  176. 176.
    Shen Y, Guan Y, Hu Y, Lei Y, Song Y, Lin Y, Nan CW (2013) Dielectric behavior of graphene/BaTiO[sub 3]/polyvinylidene fluoride nanocomposite under high electric field. Appl Phys Lett 103(7):072906-4CrossRefGoogle Scholar
  177. 177.
    Song Y, ZhuDi Z, WenXue Y, Bo L, XinFang C (2007) Morphological structures of poly(vinylidene fluoride)/montmorillonite nanocomposites. Sci China Ser B Chem 50(6):790–796CrossRefGoogle Scholar
  178. 178.
    Sordan R, Traversi F, Russo V (2009) Logic gates with a single graphene transistor. Appl Phys Lett 94(7):073305-3CrossRefGoogle Scholar
  179. 179.
    Tian S, Wang X (2008) Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials. J Mater Sci 43(14):4979–4987CrossRefGoogle Scholar
  180. 180.
    Topsakal M, Bagci VMK, Salim Ciraci S (2010) Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys Rev B 81:205437CrossRefGoogle Scholar
  181. 181.
    Akiyama M, Morofuji Y, Kamohara T, Nishikubo K, Tsubai M, Fukuda O, Ueno N (2006) Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys 100(11):114318-5CrossRefGoogle Scholar
  182. 182.
    Banerjee S, Chennault CAK (2011) An analytical model for the effective dielectric constant of a 0–3–0 composite. J Eng Mater Technol 133(4):041005CrossRefGoogle Scholar
  183. 183.
    Banerjee S, Chennault CAK, Capera R, Chowela M (2013) Influence of Al inclusions and PZT volume fraction on the dielectric and piezoelectric characteristics of three phase PZT-cement-Al composites. In: Advances in Cement Research. Accepted For PublicationGoogle Scholar
  184. 184.
    Banerjee S, Chennault CAK (2013) Multi walled carbon nanotube based flexible multi-morph composite thick films with graphene electrodes. Energy Environ FocusGoogle Scholar
  185. 185.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRefGoogle Scholar
  186. 186.
    Choi HW, Heo YW, Lee JH, Kim JJ, Lee HY, Park ET, Chung YK (2006) Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethyl methacrylate composites. Appl Phys Lett 89(13):132910-132910-3Google Scholar
  187. 187.
    Chennault CKA, Thambi N, Hameyie EB (2008) Piezoelectric energy harvesting: a green and clean alternative for sustained power production. Bull Sci Technol Soc 28(6):496–509CrossRefGoogle Scholar
  188. 188.
    Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO[sub 3]/polyvinylidene fluoride composites. Appl Phys Lett 81(25):4814–4816CrossRefGoogle Scholar
  189. 189.
    Gao G, Çagin T, Goddard WA (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3):184CrossRefGoogle Scholar
  190. 190.
    Li Z, Biqin Dong B, Zhang D (2005) Influence of polarization on properties of 0–3 cement-based PZT composites. Cement Concr Compos 27(1):27–32CrossRefGoogle Scholar
  191. 191.
    Liang Y, Frisch J, Zhi L, Norouzi-Arasi H, Feng X, Rabe JP, Koch N, Müllen K (2009) Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. Nanotechnology 20(43):434007CrossRefGoogle Scholar
  192. 192.
    Nan CW, Liu L, Cai N, Zhai J, Ye J, Lin YH, Dong LJ, Xiong CX (2002) A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl Phys Lett 81(20):3831–3833CrossRefGoogle Scholar
  193. 193.
    Thomas M, Folliard K, Drimalas T, Ramlochan T (2008) Diagnosing delayed ettringite formation in concrete structures. Cem Concr Res 38(6):841–847CrossRefGoogle Scholar
  194. 194.
    Yadav K, Smelser CW, Jacob S, Blanchetiere C, Callender CL, Albert J (2011) Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities. Appl Phys Lett 99(3):031109Google Scholar
  195. 195.
    Bao WS, Meguid SA, Zhu ZH, Pan Y, Weng GJ (2012) A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech Mater 46:129–138CrossRefGoogle Scholar
  196. 196.
    Blanas P, Gupta KD (1999) Composite piezoelectric materials for health monitoring of composite structures. In: MRS ProceedingsGoogle Scholar
  197. 197.
    Yao SH, Dang ZM, Jiang MJ, Bai J (2008) BaTiO[sub 3]-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss. Appl Phys Lett 93(18):182905-3CrossRefGoogle Scholar
  198. 198.
    Arlt K, Wegener M (2010) Piezoelectric PZT/PVDF-copolymer 0–3 composites: aspects on film preparation and electrical poling. IEEE Trans Dielectr Electr Insul 17(4):1178–1184Google Scholar
  199. 199.
    Dietze M, Es-Souni M (2008) Structural and functional properties of screen-printed PZT–PVDF-TrFE composites. Sens Actuators, A 143(2):329–334CrossRefGoogle Scholar
  200. 200.
    Oliveira F, Leterrier Y, Manson JA, Sereda O, Neels A, Dommann A, Damjanovic D (2014) Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J Polym Sci Part B Polym Phys 52(7):496–506CrossRefGoogle Scholar
  201. 201.
    Son YH, Kweon SY, Kim SJ, Kim YM, Hong TW, Lee YG (2007) Fabrication and electrical properties of Pzt-Pvdf 0–3 type composite film. Integr Ferroelectr 88(1):44–50CrossRefGoogle Scholar
  202. 202.
    Pedersen T, Hindrichsen CC, Thomsen EV (2007) Investigation of top/bottom electrode and diffusion barrier layer for PZT thick film MEMS Sensors. In: Sensors IEEEGoogle Scholar
  203. 203.
    Ounaies Z, Park C, Harrison J, Lillehei P (2008) Evidence of piezoelectricity in SWNT-polyimide and SWNT-PZT-polyimide composites. J Thermoplast Compos Mater 21(5):393–409CrossRefGoogle Scholar
  204. 204.
    Sessler GM, West JE (1962) Self-biased condenser microphone with high capacitance. J Acoust Soc Am 34(11):1787–1788CrossRefGoogle Scholar
  205. 205.
    Gerhard-Multhaupt R (2002) Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans Dielectr Electr Insul 9(5):850–859CrossRefGoogle Scholar
  206. 206.
    Fang P, Qiu X, Wirges W, Gerhard R (2010) Polyethylene-naphthalate (PEN) ferroelectrets: cellular structure, piezoelectricity and thermal stability. IEEE Trans Dielectr Electr Insul 17(4):1079–1087CrossRefGoogle Scholar
  207. 207.
    Zhang X, Huang J, Wang X, Xia Z (2010) Piezoelectricity and dynamic characteristics of laminated fluorocarbon films. IEEE Trans Dielectr Electr Insul 17(4):1001–1007CrossRefGoogle Scholar
  208. 208.
    Hu Z, Seggern HV (2006) Breakdown-induced polarization buildup in porous fluoropolymer sandwiches: a thermally stable piezoelectret. J Appl Phys 99(2):024102CrossRefGoogle Scholar
  209. 209.
    Feng Y, Hagiwara K, IguchiY Suzuki Y (2012) Trench-filled cellular parylene electret for piezoelectric transducer. Appl Phys Lett 100(26):262901CrossRefGoogle Scholar
  210. 210.
    Banerjee S, Chennault KAC (2014) Influence of aluminium inclusions on dielectric properties of three-phase PZT–cement–aluminium composites. Adv Cement Res 26:63–76CrossRefGoogle Scholar
  211. 211.
    Park KI (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10(12):4939–4943CrossRefGoogle Scholar
  212. 212.
    Qi L, Lee BI, Samuels WD, Exarhos GJ, Parler SG (2006) Three-phase percolative silver–BaTiO3–epoxy nanocomposites with high dielectric constants. J Appl Polym Sci 102(2):967–971CrossRefGoogle Scholar
  213. 213.
    Zhao LY, Gu JG, Ma HR, Sun ZG (2010) Mechanical properties and curing kinetics of epoxy resins cured by various amino-terminated polyethers. Chin J Polym Sci 28(6):961–969CrossRefGoogle Scholar
  214. 214.
    Zepu W, Nelson JK, Miao J, Linhardt RJ, Schadler LS (2012) Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans Dielectr Electr Insul 19(3):960–967CrossRefGoogle Scholar
  215. 215.
    Bao WS, Meguid SA, Zhu ZH, Weng GJ (2012) Tunneling resistance and its effect on the electrical conductivity of CNT nanocomposites. J Appl Phys 111:093726CrossRefGoogle Scholar
  216. 216.
    Yang W, Pan Y, Pelegri AA (2013) Multiscale modeling of matrix cracking coupled with interfacial debonding in random glass fiber composites based on volume elements. J Compos Mater 47(27):3389–3399CrossRefGoogle Scholar
  217. 217.
    Pan CT, Liu ZH, Chen YC, Liu CF (2010) Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sens Actuators, A 159(1):96–104CrossRefGoogle Scholar
  218. 218.
    Huang S, Chang J, Lu L, Liu F, Ye Z, Cheng X (2006) Preparation and polarization of 0–3 cement based piezoelectric composites. Mater Res Bull 41(2):291–297CrossRefGoogle Scholar
  219. 219.
    Kok SL, White NM, Harris NR (2009) Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting. Meas Sci Technol 20(12):124010CrossRefGoogle Scholar
  220. 220.
    Chung SY, Kim S, Lee JH, Kim K, Kim SW, Kang SCY, Yoon SJ, Kim YS (2012) All-solution-processed flexible thin film piezoelectric nanogenerator. Adv Mater 24(45):6022–6027CrossRefGoogle Scholar
  221. 221.
    Park H, Brown PR, Bulović V, Kong J (2011) Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett 12(1):133–140CrossRefGoogle Scholar
  222. 222.
    Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano 3(5):270–274CrossRefGoogle Scholar
  223. 223.
    Wang X, Zhi L, Müllen K (2007) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327CrossRefGoogle Scholar
  224. 224.
    Ren Y, Zhu C, Cai W, Li H, Ji H, Kholmanov I, Wu Y, Piner RD, Ruoff RS (2012) Detection of sulfur dioxide gas with graphene field effect transistor. Appl Phys Lett 100(16):163114-4CrossRefGoogle Scholar
  225. 225.
    Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional. Sci Rep 1:1–5CrossRefGoogle Scholar
  226. 226.
    Chen G, Paronyan TM, Harutyunyan AR (2012) Sub-ppt gas detection with pristine graphene. Appl Phys Lett 101(5):053119-4Google Scholar
  227. 227.
    Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRefGoogle Scholar
  228. 228.
    Schmidt RH, Kinloch JA, Burgess AN, Windle AH (2007) The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 23(10):5707–5712CrossRefGoogle Scholar
  229. 229.
    Chen H, Muthuraman H, Stokes P, Zou J, Liu X, Wang J, Huo Q, Khondaker SI, Zhai L (2007) Dispersion of carbon nanotubes and polymer nanocomposite fabrication using trifluoroacetic acid as a co-solvent. Nanotechnology 18(41):415606CrossRefGoogle Scholar
  230. 230.
    Pascariu V, Padurariu L, Avadanei O, Mitoseriu L (2013) Dielectric properties of PZT–epoxy composite thick films. J Alloy Compd 574:591–599CrossRefGoogle Scholar
  231. 231.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Saquib Ahmed
    • 1
    Email author
  • Sankha Banerjee
    • 2
  • Udhay Sundar
    • 3
  • Hector Ruiz
    • 2
  • Sanjeev Kumar
    • 2
  • Ajith Weerasinghe
    • 2
  1. 1.Portland Community CollegePortlandUSA
  2. 2.Mechanical EngineeringCalifornia State UniversityFresnoUSA
  3. 3.Rutgers UniversityNew BrunswickUSA

Personalised recommendations