Skip to main content

Insights into Candida Lipids

  • Chapter
  • First Online:
Candida albicans: Cellular and Molecular Biology

Abstract

Although lipid metabolic pathways are fairly well established in yeast, our knowledge of lipid compositional profile, particularly in pathogenic species, is rather limited. Fungal lipids are important on two accounts; first, they possess lipids, particularly sphingolipids, which are unique to Candida species and are absent in mammalian host hence are novel drug targets. Second, the functionality of some of the multidrug resistance (MDR) export proteins is dependent upon optimal lipid environment implying their role in clinical drug resistance. The comprehensive high-throughput lipidomics combined with genetic approaches applied to human pathogenic diploid C. albicans has started providing insight into mysteries surrounded around this important class of biomolecules. Recent studies already revealed functional interactions between lipids, virulence, and MDR determinants in Candida. This chapter reviews some of the recent advances in the field and highlights the role of lipids involved in cross talks between different cellular circuits that impact the acquisition of MDR in Candida.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cannon RD, Fischer FJ, Niimi K, Niimi M, Arisawa M (1998) Drug pumping mechanisms in Candida albicans. Nihon Ishinkin Gakkai Zasshi 39:73–78

    Article  CAS  PubMed  Google Scholar 

  • Chandra J, McCormick TS, Imamura Y, Mukherjee PK, Ghannoum MA (2007) Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun 75:2612–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Montedonico AE, Kauffman S, Dunlap JR, Menn FM, Reynolds TB (2010) Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 75(5):1112–1132. doi:10.1111/j.1365-2958.2009.07018.x

    Article  CAS  PubMed  Google Scholar 

  • Del Poeta M, Nimrichter L, Rodrigues ML, Luberto C (2014) Synthesis and biological properties of fungal glucosylceramide. PLoS Pathog 10(1):e1003832. doi:10.1371/journal.ppat.1003832

    Article  PubMed  PubMed Central  Google Scholar 

  • Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A. 106(7):2136–2141. doi:10.1073/pnas.0811700106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5(8):777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-García M, Henry SA (2007) The emergence of yeast lipidomics. Biochim Biophys Acta 1771:241–254

    Article  CAS  PubMed  Google Scholar 

  • Guan XL, Wenk MR (2006) Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23:465–477

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal NK, Kaemmer P, Förster TM, Singh A, Coste AT, Andes DR, Hube B, Sanglard D, Chauhan N, Kaur R, d’Enfert C, Mondal AK, Prasad R (2016) Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochem J 473(11):1537–1552. doi:10.1042/BCJ20160024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köfeler HC, Fauland A, Rechberger GN, Trötzmüller M (2012) Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites. 2(1):19–38. doi:10.3390/metabo2010019

    Article  PubMed  PubMed Central  Google Scholar 

  • Lattif AA, Chandra J, Chang J, Liu S, Zhou G, Chance MR, Ghannoum MA, Mukherjee PK (2008) Proteomic and pathway analyses reveal phase-dependent over-expression of proteins associated with carbohydrate metabolic pathways in Candida albicans biofilms. Open Proteomics 1:5–26

    Google Scholar 

  • Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M, Ghannoum MA (2011) Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157(11):3232–3242. doi:10.1099/mic.0.051086-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Maesaki S, Marichal P, Vanden Bossche H, Sanglard D, Kohno S (1999) Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. J Antimicrob Chemother 44:27–31

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudabadi AZ, Boote V, Drucker DB (2001) Characterization of polar lipids of oral isolates of Candida, Pichia and Saccharomyces by fast atom bombardment mass spectrometry (FAB MS). J Appl Microbiol 90:668–675

    Article  CAS  PubMed  Google Scholar 

  • Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M (2015) Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio. 6(3):e00647. doi:10.1128/mBio.00647-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R (2004) Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother 48(5):1778–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble SM, French S, Kohn LA, Chen V, Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42(7):590–598. doi:10.1038/ng.605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasrija R, Krishnamurthy S, Prasad T, Ernst JF, Prasad R (2005a) Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans. J Antimicrob Chemother 55:905–913

    Article  CAS  PubMed  Google Scholar 

  • Pasrija R, Prasad T, Prasad R (2005b) Membrane raft lipid constituents affect drug susceptibilities of Candida albicans. Biochem Soc Trans 33:1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Pasrija R, Panwar SL, Prasad R (2008) Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 52:694–704

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Singh A (2013) Lipids of Candida albicans and their role in multidrug resistance. Curr Genet 59(4):243–250. doi:10.1007/s00294-013-0402-1

    Article  CAS  PubMed  Google Scholar 

  • Prasad T, Saini P, Gaur NA, Vishwakarma RA, Khan LA, Haq QM, Prasad R (2005) Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans. Antimicrob Agents Chemother 49(8):3442–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Rawal MK, Shah AH (2016) Candida efflux ATPases and antiporters in clinical drug resistance. Adv Exp Med Biol 892:351–376. doi:10.1007/978-3-319-25304-6_15

    Article  PubMed  Google Scholar 

  • Shahi P, Moye-Rowley WS (2009) Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochim Biophys Acta 1794:852–859

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598. doi:10.1038/nrm2934

    Article  CAS  PubMed  Google Scholar 

  • Shingu-Vazquez M, Traven A (2011) Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell 10:1376–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Rai V, Banerjee D, Prasad R (2006) Characterization of Cdr1p, a major multidrug efflux protein of Candida albicans: purified protein is amenable to intrinsic fluorescence analysis. Biochemistry 45(7):2425–2435

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697. doi:10.1101/cshperspect.a004697

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Prasad R (2011) Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLoS ONE 6(4):e19266. doi:10.1371/journal.pone.0019266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Prasad T, Kapoor K, Mandal A, Roth M, Welti R, Prasad R (2010) Phospholipidome of Candida: each species of Candida has distinctive phospholipid molecular species. OMICS 14(6):665–677. doi:10.1089/omi.2010.0041

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Yadav V, Prasad R (2012) Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PLoS ONE 7(6):e39812. doi:10.1371/journal.pone.0039812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Mahto KK, Prasad R (2013) Lipidomics and in vitro azole resistance in Candida albicans. OMICS 17(2):84–93. doi:10.1089/omi.2012.0075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smriti Krishnamurthy S, Dixit BL, Gupta CM, Milewski S, Prasad R (2002) ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators. Yeast 19(4):303–318

    Article  CAS  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124. doi:10.1038/nrm2330

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov. 4:594–610

    Article  CAS  PubMed  Google Scholar 

  • Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895. doi:10.1016/j.cell.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  • Yeater KM, Chandra J, Cheng G, Mukherjee PK, Zhao X, Rodriguez-Zas SL, Kwast KE, Ghannoum MA, Hoyer LL (2007) Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology 153:2373–2385

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6(6):e1000939. doi:10.1371/journal.ppat.1000939

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work from authors (RP) laboratory discussed has been supported in part by grants from the Department of Biotechnology (BT/PR11158/BRB/10/640/2008, BT/PR13641/Med/29/175/2010, BT/PR14879/BRB10/885/2010, BT/01/CEIB/10/III/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prasad, R., Shukla, S., Singh, A. (2017). Insights into Candida Lipids. In: Prasad, R. (eds) Candida albicans: Cellular and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-50409-4_20

Download citation

Publish with us

Policies and ethics