Skip to main content

Structure–Function Analyses of Multidrug Transporters

  • Chapter
  • First Online:
Candida albicans: Cellular and Molecular Biology

Abstract

Proteins catalysing the transport of molecules across biological membranes are vital for organisms in all kingdoms of life. These proteins are needed for the uptake of nutrients and the efflux of signalling molecules and toxic compounds. In the human opportunistic pathogen Candida albicans, efflux proteins can translocate antifungal drugs, such as fluconazole, and confer drug resistance. There are two main families of membrane proteins involved in drug transport, the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) proteins. Both types of protein possess multiple membrane spanning α-helices in transmembrane domains (TMDs), and ABC proteins, in addition, contain cytosolic nucleotide-binding domains (NBDs) involved in ATP hydrolysis. ABC proteins, and to a lesser extent MFS proteins, have broad substrate specificities that are determined by the structure and arrangement of the transmembrane α-helices. The multidrug transporter most often associated with drug resistance of C. albicans clinical isolates is ABC protein Cdr1. This is a pleiotropic drug resistance (PDR) ABC protein with domain arrangement NBD1-TMD1-NBD2-TMD2 and unique large extracellular loops between transmembrane α-helices that may be important for pump function. There is no crystal structure for Cdr1, but X-ray structures of related proteins indicate that unique interactions between conserved elements of the TMDs and the NBDs are important for pump function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ananthaswamy N, Rutledge R, Sauna ZE, Ambudkar SV, Dine E, Nelson E, Xia D, Golin J (2010) The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. Biochemistry 49:4440–4449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun BR, van Het Hoog M, d’Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A, Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, Iouk T, Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates S, Gow NA, Hoyer LL, Kohler G, Morschhauser J, Newport G, Znaidi S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M, Nantel A (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1:36–57

    Article  CAS  PubMed  Google Scholar 

  • Calabrese D, Bille J, Sanglard D (2000) A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 146(Pt 11):2743–2754

    Article  CAS  PubMed  Google Scholar 

  • Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22:291–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Grigorieff N, Penczek PA, Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161:438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman JJ, Mylonakis E (2009) Efflux in fungi: la piece de resistance. PLoS Pathog 5:e1000486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa C, Dias PJ, Sa-Correia I, Teixeira MC (2014) MFS multidrug transporters in pathogenic fungi: do they have real clinical impact? Front Physiol 5:197

    PubMed  PubMed Central  Google Scholar 

  • Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d’Enfert C, Berman J, Sanglard D (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6:1889–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coste AT, Karababa M, Ischer F, Bille J, Sanglard D (2004) TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3:1639–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130

    Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938

    Article  CAS  PubMed  Google Scholar 

  • de Micheli M, Bille J, Schueller C, Sanglard D (2002) A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol Microbiol 43:1197–1214

    Article  PubMed  Google Scholar 

  • Delmar JA, Bolla JR, Su CC, Yu EW (2015) Crystallization of membrane proteins by vapor diffusion. Methods Enzymol 557:363–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downes MT, Mehla J, Ananthaswamy N, Wakschlag A, Lamonde M, Dine E, Ambudkar SV, Golin J (2013) The transmission interface of the Saccharomyces cerevisiae multidrug transporter Pdr5: Val-656 located in intracellular loop 2 plays a major role in drug resistance. Antimicrob Agents Chemother 57:1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunkel N, Blass J, Rogers PD, Morschhauser J (2008) Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol 69:827–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egner R, Bauer BE, Kuchler K (2000) The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 35:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Egner R, Rosenthal FE, Kralli A, Sanglard D, Kuchler K (1998) Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter. Mol Biol Cell 9:523–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst R, Kueppers P, Klein CM, Schwarzmueller T, Kuchler K, Schmitt L (2008) A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5. Proc Natl Acad Sci U S A 105:5069–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps–first come, first served? FEBS J 277:540–549

    Article  CAS  PubMed  Google Scholar 

  • Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y (1991) Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet 227:318–329

    Article  CAS  PubMed  Google Scholar 

  • Ford RC, Kamis AB, Kerr ID, Callaghan R (2009) The ABC transporters: structural insights into drug transport. Transporters as Drug Carriers: Struct Funct Substrates 44:3

    CAS  Google Scholar 

  • Fribourg PF, Chami M, Sorzano CO, Gubellini F, Marabini R, Marco S, Jault JM, Levy D (2014) 3D cryo-electron reconstruction of BmrA, a bacterial multidrug ABC transporter in an inward-facing conformation and in a lipidic environment. J Mol Biol 426:2059–2069

    Article  CAS  PubMed  Google Scholar 

  • Furman C, Mehla J, Ananthaswamy N, Arya N, Kulesh B, Kovach I, Ambudkar SV, Golin J (2013) The deviant ATP-binding site of the multidrug efflux pump Pdr5 plays an active role in the transport cycle. J Biol Chem 288:30420–30431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur M, Choudhury D, Prasad R (2005) Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans. J Mol Microbiol Biotechnol 9:3–15

    Article  CAS  PubMed  Google Scholar 

  • Gaur M, Puri N, Manoharlal R, Rai V, Mukhopadhayay G, Choudhury D, Prasad R (2008) MFS transportome of the human pathogenic yeast Candida albicans. BMC Genom 9:579

    Article  CAS  Google Scholar 

  • George AM, Jones PM (2012) Perspectives on the structure-function of ABC transporters: the switch and constant contact models. Prog Biophys Mol Biol 109:95–107

    Article  CAS  PubMed  Google Scholar 

  • Golin J, Ambudkar SV (2015) The multidrug transporter Pdr5 on the 25th anniversary of its discovery: an important model for the study of asymmetric ABC transporters. Biochem J 467:353–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golin J, Ambudkar SV, Gottesman MM, Habib AD, Sczepanski J, Ziccardi W, May L (2003) Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux. J Biol Chem 278:5963–5969

    Article  CAS  PubMed  Google Scholar 

  • Golin J, Ambudkar SV, May L (2007) The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? Biochem Biophys Res Commun 356:1–5

    Article  CAS  PubMed  Google Scholar 

  • Gupta RP, Kueppers P, Schmitt L, Ernst R (2011) The multidrug transporter Pdr5: a molecular diode? Biol Chem 392:53–60

    CAS  PubMed  Google Scholar 

  • Gutmann DA, Ward A, Urbatsch IL, Chang G, van Veen HW (2010) Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem Sci 35:36–42

    Article  CAS  PubMed  Google Scholar 

  • Henderson R (2015) Overview and future of single particle electron cryomicroscopy. Arch Biochem Biophys 581:19–24

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926

    Article  CAS  PubMed  Google Scholar 

  • Hiraga K, Yamamoto S, Fukuda H, Hamanaka N, Oda K (2005) Enniatin has a new function as an inhibitor of Pdr5p, one of the ABC transporters in Saccharomyces cerevisiae. Biochem Biophys Res Commun 328:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17:412–418

    Google Scholar 

  • Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216

    Google Scholar 

  • Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD (2008) ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 52:3851–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Janbon G, Ormerod KL, Paulet D, Byrnes EJ 3rd, Yadav V, Chatterjee G, Mullapudi N, Hon CC, Billmyre RB, Brunel F, Bahn YS, Chen W, Chen Y, Chow EW, Coppee JY, Floyd-Averette A, Gaillardin C, Gerik KJ, Goldberg J, Gonzalez-Hilarion S, Gujja S, Hamlin JL, Hsueh YP, Ianiri G, Jones S, Kodira CD, Kozubowski L, Lam W, Marra M, Mesner LD, Mieczkowski PA, Moyrand F, Nielsen K, Proux C, Rossignol T, Schein JE, Sun S, Wollschlaeger C, Wood IA, Zeng Q, Neuveglise C, Newlon CS, Perfect JR, Lodge JK, Idnurm A, Stajich JE, Kronstad JW, Sanyal K, Heitman J, Fraser JA, Cuomo CA, Dietrich FS (2014) Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 10:e1004261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PM, George AM (2009) Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins 75:387–396

    Article  CAS  PubMed  Google Scholar 

  • Jones PM, O’Mara ML, George AM (2009) ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem Sci 34:520–531

    Article  CAS  PubMed  Google Scholar 

  • Kerr ID, Jones PM, George AM (2010) Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues. FEBS J 277:550–563

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowski M, Sroda-Pomianek K, Kolaczkowska A, Michalak K (2013) A conserved interdomain communication pathway of pseudosymmetrically distributed residues affects substrate specificity of the fungal multidrug transporter Cdr1p. Biochim Biophys Acta 1828:479–490

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk A, Driessen AJ (2010) Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11:177

    Article  CAS  Google Scholar 

  • Kralli A, Yamamoto KR (1996) An FK506-sensitive transporter selectively decreases intracellular levels and potency of steroid hormones. J Biol Chem 271:17152–17156

    Article  CAS  PubMed  Google Scholar 

  • Kueppers P, Gupta RP, Stindt J, Smits SH, Schmitt L (2013) Functional impact of a single mutation within the transmembrane domain of the multidrug ABC transporter Pdr5. Biochemistry 52:2184–2195

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Shukla S, Mandal A, Shukla S, Ambudkar SV, Prasad R (2010) Divergent signature motifs of nucleotide binding domains of ABC multidrug transporter, CaCdr1p of pathogenic Candida albicans, are functionally asymmetric and noninterchangeable. Biochim Biophys Acta 1798:1757–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A, Cannon RD (2010) Fungal PDR transporters: Phylogeny, topology, motifs and function. Fungal Genet Biol 47:127–142

    Article  CAS  PubMed  Google Scholar 

  • Lamping E, Cannon RD (2010) Use of a yeast-based membrane protein expression technology to overexpress drug resistance efflux pumps. Methods Mol Biol 666:219–250

    Article  CAS  PubMed  Google Scholar 

  • Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, Tanabe K, Niimi M, Uehara Y, Cannon RD (2007) Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6:1150–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamping E, Niimi M, Niimi K, Tanabe K, Cannon RD (2014) How do the transmembrane domains of PDR transporters like Cdr1p fold. Paper presented at the conference celebrating 20 years of CDR1 research, New Delhi, India, 4–8 January 2014

    Google Scholar 

  • Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Kinch LN, Borek DM, Wang J, Wang J, Urbatsch IL, Xie XS, Grishin NV, Cohen JC, Otwinowski Z, Hobbs HH, Rosenbaum DM (2016) Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533:561–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MD, Galazzo JL, Staley AL, Lee JC, Warren MS, Fuernkranz H, Chamberland S, Lomovskaya O, Miller GH (2001) Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 56:81–85

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jaimes KF, Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23:34–46

    Article  PubMed  CAS  Google Scholar 

  • Li R, Kumar R, Tati S, Puri S, Edgerton M (2013) Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity. Antimicrob Agents Chemother 57:1832–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TT, Znaidi S, Barker KS, Xu L, Homayouni R, Saidane S, Morschhauser J, Nantel A, Raymond M, Rogers PD (2007) Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 6:2122–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locher KP (2004) Structure and mechanism of ABC transporters. Curr Opin Struct Biol 14:426–431

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Biggin PC (2013) Substrate versus inhibitor dynamics of P-glycoprotein. Proteins 81:1653–1668

    Article  CAS  PubMed  Google Scholar 

  • Maebashi K, Niimi M, Kudoh M, Fischer FJ, Makimura K, Niimi K, Piper RJ, Uchida K, Arisawa M, Cannon RD, Yamaguchi H (2001) Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J Antimicrob Chemother 47:527–536

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Kumar A, Singh A, Lynn AM, Kapoor K, Prasad R (2012) A key structural domain of the Candida albicans Mdr1 protein. Biochem J 445:313–322

    Article  CAS  PubMed  Google Scholar 

  • Moeller A, Lee SC, Tao H, Speir JA, Chang G, Urbatsch IL, Potter CS, Carragher B, Zhang Q (2015) Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 23:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morschhauser J, Barker KS, Liu TT, Bla BWJ, Homayouni R, Rogers PD (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3:e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nannenga BL, Iadanza MG, Vollmar BS, Gonen T (2013) Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy. In: Coligan John E et al Current protocols in protein science Chapter 17: Unit17 15

    Google Scholar 

  • Niimi K, Harding DR, Holmes AR, Lamping E, Niimi M, Tyndall JD, Cannon RD, Monk BC (2012) Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a D-octapeptide derivative inhibitor. Mol Microbiol 85:747–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y, Sonoda Y, Hussien SA, Qureshi AA, Coincon M, Sato Y (2015) Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasrija R, Banerjee D, Prasad R (2007) Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. Eukaryot Cell 6:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen IT, Brown MH, Littlejohn TG, Mitchell BA, Skurray RA (1996) Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci U S A 93:3630–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen IT, Skurray RA (1993) Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes–an analysis. Gene 124:1–11

    Article  CAS  PubMed  Google Scholar 

  • Perlin MH, Andrews J, Toh SS (2014) Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity. Adv Genet 85:201–253

    CAS  PubMed  Google Scholar 

  • Prajapati R, Sangamwar AT (2014) Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. Biochim Biophys Acta 1838:2882–2898

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Goffeau A (2012) Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu Rev Microbiol 66:39–63

    Article  CAS  PubMed  Google Scholar 

  • Puri N, Gaur M, Sharma M, Shukla S, Ambudkar SV, Prasad R (2009) The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of Candida albicans are involved in substrate specificity and drug transport. Biochim Biophys Acta 1788:1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri N, Prakash O, Manoharlal R, Sharma M, Ghosh I, Prasad R (2010) Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans. Eur J Med Chem 45:4813–4826

    Article  CAS  PubMed  Google Scholar 

  • Quistgaard EM, Low C, Guettou F, Nordlund P (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 17:123–132

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Gaur M, Shukla S, Shukla S, Ambudkar SV, Komath SS, Prasad R (2006) Conserved Asp327 of walker B motif in the N-terminal nucleotide binding domain (NBD-1) of Cdr1p of Candida albicans has acquired a new role in ATP hydrolysis. Biochemistry 45:14726–14739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravna AW, Sylte I, Sager G (2009) Binding site of ABC transporter homology models confirmed by ABCB1 crystal structure. Theor Biol Med Model 6:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawal MK, Khan MF, Kapoor K, Goyal N, Sen S, Saxena AK, Lynn AM, Tyndall JD, Monk BC, Cannon RD, Komath SS, Prasad R (2013) Insight into pleiotropic drug resistance ATP-binding cassette pump drug transport through mutagenesis of Cdr1p transmembrane domains. J Biol Chem 288:24480–24493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279:2022–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigaud J-L, Chami M, Lambert O, Levy D, Ranck J-L (2000) Use of detergents in two-dimensional crystallization of membrane proteins. Biochim Biophys Acta (BBA)-Biomembranes 1508:112–128

    Google Scholar 

  • Rosenberg MF, Kamis AB, Callaghan R, Higgins CF, Ford RC (2003) Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 278:8294–8299

    Article  CAS  PubMed  Google Scholar 

  • Rutledge RM, Esser L, Ma J, Xia D (2011) Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5p: a molecular modeling study. J Struct Biol 173:333–344

    Article  CAS  PubMed  Google Scholar 

  • Sa-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP (2009) Drug: H+ antiporters in chemical stress response in yeast. Trends Microbiol 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Saini P, Prasad T, Gaur NA, Shukla S, Jha S, Komath SS, Khan LA, Haq QM, Prasad R (2005) Alanine scanning of transmembrane helix 11 of Cdr1p ABC antifungal efflux pump of Candida albicans: identification of amino acid residues critical for drug efflux. J Antimicrob Chemother 56:77–86

    Article  CAS  PubMed  Google Scholar 

  • Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39:2378–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauna ZE, Bohn SS, Rutledge R, Dougherty MP, Cronin S, May L, Xia D, Ambudkar SV, Golin J (2008) Mutations define cross-talk between the N-terminal nucleotide-binding domain and transmembrane helix-2 of the yeast multidrug transporter Pdr5: possible conservation of a signaling interface for coupling ATP hydrolysis to drug transport. J Biol Chem 283:35010–35022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauna ZE, Kim IW, Nandigama K, Kopp S, Chiba P, Ambudkar SV (2007) Catalytic cycle of ATP hydrolysis by P-glycoprotein: evidence for formation of the E. S reaction intermediate with ATP-gamma-S, a nonhydrolyzable analogue of ATP. Biochemistry 46:13787–13799

    Article  CAS  PubMed  Google Scholar 

  • Seelig A, Landwojtowicz E (2000) Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur J Pharm Sci 12:31–40

    Article  CAS  PubMed  Google Scholar 

  • Shah AH, Rawal MK, Dhamgaye S, Komath SS, Saxena AK, Prasad R (2015) Mutational analysis of intracellular loops identify cross talk with nucleotide binding domains of yeast ABC transporter Cdr1p. Sci Rep 5:11211

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Ambudkar SV, Prasad R (2004) Substitution of threonine-1351 in the multidrug transporter Cdr1p of Candida albicans results in hypersusceptibility to antifungal agents and threonine-1351 is essential for synergic effects of calcineurin inhibitor FK520. J Antimicrob Chemother 54:38–45

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Saini P, Smriti Jha S, Ambudkar SV, Prasad R (2003) Functional characterization of Candida albicans ABC transporter Cdr1p. Eukaryot Cell 2:1361–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva LV, Sanguinetti M, Vandeputte P, Torelli R, Rochat B, Sanglard D (2013) Milbemycins: more than efflux inhibitors for fungal pathogens. Antimicrob Agents Chemother 57:873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe K, Lamping E, Nagi M, Okawada A, Holmes AR, Miyazaki Y, Cannon RD, Monk BC, Niimi M (2011) Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Mol Microbiol 82:416–433

    Article  CAS  PubMed  Google Scholar 

  • Tsao S, Rahkhoodaee F, Raymond M (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53:1344–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tutulan-Cunita AC, Mikoshi M, Mizunuma M, Hirata D, Miyakawa T (2005) Mutational analysis of the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity. Genes to cells: devoted to molecular & cellular mechanisms 10:409–420

    Article  CAS  Google Scholar 

  • Velamakanni S, Yao Y, Gutmann DA, van Veen HW (2008) Multidrug transport by the ABC transporter Sav 1866 from Staphylococcus aureus. Biochemistry 47:9300–9308

    Article  CAS  PubMed  Google Scholar 

  • Vinothkumar KR (2015) Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 33:103–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci U S A 104:19005–19010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward AB, Szewczyk P, Grimard V, Lee CW, Martinez L, Doshi R, Caya A, Villaluz M, Pardon E, Cregger C, Swartz DJ, Falson PG, Urbatsch IL, Govaerts C, Steyaert J, Chang G (2013) Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proc Natl Acad Sci U S A 110:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TC (1997) Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirsching S, Michel S, Morschhauser J (2000) Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 36:856–865

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Zhang M, Zhao Q, Yu F, Guo H, Wang C, He F, Ding J, Zhang P (2013) Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 497:268–271

    Article  CAS  PubMed  Google Scholar 

  • Yamada-Okabe T, Yamada-Okabe H (2002) Characterization of the CaNAG3, CaNAG4, and CaNAG6 genes of the pathogenic fungus Candida albicans: possible involvement of these genes in the susceptibilities of cytotoxic agents. FEMS Microbiol Lett 212:15–21

    Article  CAS  PubMed  Google Scholar 

  • Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159

    Article  CAS  PubMed  Google Scholar 

  • Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257–283

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Znaidi S, Weber S, Al-Abdin OZ, Bomme P, Saidane S, Drouin S, Lemieux S, De Deken X, Robert F, Raymond M (2008) Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot Cell 7:836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Marsden Fund of the Royal Society of New Zealand (UOO1305) and a research grant from Chulalongkorn University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Cannon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lamping, E., Madani, G., Lee, H.J., Niimi, M., Cannon, R.D. (2017). Structure–Function Analyses of Multidrug Transporters. In: Prasad, R. (eds) Candida albicans: Cellular and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-50409-4_18

Download citation

Publish with us

Policies and ethics