Skip to main content

Iron Acquisition in the Pathobiology of Candida albicans

  • Chapter
  • First Online:

Abstract

The host nutritional environment is a key determinant for survival of human pathogens including C. albicans. Iron is an essential micronutrient for the host as well as for Calbicans. However, iron sequestration in host proteins confers ‘nutritional immunity’. In this chapter, we have reviewed our current understanding of the different iron uptake systems, the associated genes, and their transcriptional regulation in Calbicans. Besides, iron acquisition is essential for Calbicans virulence and iron homeostasis is also interlinked with lipid homeostasis and multidrug resistance. We have also provided an atlas of all annotated Calbicans iron acquisition genes with the attendant gene expression, and phenotype data including virulence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, Filler SG, Hube B (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4(11):e1000217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9(7):1000–1012

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27(2–3):215–237

    Article  CAS  PubMed  Google Scholar 

  • Ardon O, Bussey H, Philpott C, Ward DM, Davis-Kaplan S, Verroneau S, Jiang B, Kaplan J (2001) Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J Biol Chem 276(46):43049–43055

    Article  CAS  PubMed  Google Scholar 

  • Bader T, Bodendorfer B, Schroppel K, Morschhauser J (2003) Calcineurin is essential for virulence in Candida albicans. Infect Immun 71(9):5344–5354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader T, Schroppel K, Bentink S, Agabian N, Kohler G, Morschhauser J (2006) Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 74(7):4366–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek YU, Li M, Davis DA (2008) Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Eukaryot Cell 7(7):1168–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensen ES, Martin SJ, Li M, Berman J, Davis DA (2004) Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54(5):1335–1351. doi:10.1111/j.1365-2958.2004.04350.x

    Article  CAS  PubMed  Google Scholar 

  • Binkley J, Arnaud M, Inglis D, Skrzypek M, Shah P, Wymore F, Binkley G, Miyasato S, Simison M, Sherlock G (2014) The candida genome database: the new homology information page highlights protein similarity and phylogeny. Nucleic Acids Res 42 (Database issue):D711–716

    Google Scholar 

  • Blankenship JR, Mitchell AP (2011) Candida albicans adds more weight to iron regulation. Cell Host Microbe 10(2):93–94

    Article  CAS  PubMed  Google Scholar 

  • Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156(1):31–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casanova M, Cervera AM, Gozalbo D, Martínez JP (1997) Hemin induces germ tube formation in Candida albicans. Infect Immun 65(10):4360–4364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao LY, Marletta MA, Rine J (2008) Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen histoplasma capsulatum. Biochemistry 47(27):7274–7283. doi:10.1021/bi800066s

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Noble SM (2012) Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host. PLoS Pathog 8(11):e1002956. doi:10.1371/journal.ppat.1002956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Pande K, French SD, Tuch BB, Noble SM (2011) An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10(2):118–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Xu N, Yu Q, Ding X, Qian K, Zhao Q, Wang Y, Zhang B, Xing L, Li M (2013) Novel insight into the expression and function of the multicopper oxidases in Candida albicans. Microbiology 159(6):1044–1055. doi:10.1099/mic.0.065268-0

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Nelson H, Nelson N (2000) The family of SMF metal ion transporters in yeast cells. J Biol Chem 275(43):33388–33394

    Article  CAS  PubMed  Google Scholar 

  • Davis D, Edwards JE Jr, Mitchell AP, Ibrahim AS (2000) Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68(10):5953–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12(4):365–370

    Article  CAS  PubMed  Google Scholar 

  • Eck R, Hundt S, Hartl A, Roemer E, Kunkel W (1999) A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145(Pt 9):2415–2422

    Article  CAS  PubMed  Google Scholar 

  • El Barkani A, Kurzai O, Fonzi WA, Ramon A, Porta A, Frosch M, Muhlschlegel FA (2000) Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol 20(13):4635–4647

    Article  PubMed  PubMed Central  Google Scholar 

  • Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17(2):1018–1032. doi:10.1091/mbc.E05-06-0501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang HM, Wang Y (2002) Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis. Biochem J 368(Pt 2):641–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favero D, Furlaneto-Maia L, Franc EJG, Peggau H, Goes MCF (2014) Hemolytic factor production by clinical isolates of Candida albicans. Curr Microbiol 68:161–166

    Article  CAS  PubMed  Google Scholar 

  • Georgatsou E, Alexandraki D (1999) Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15(7):573–584

    Article  CAS  PubMed  Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62(4):316–330

    Article  CAS  PubMed  Google Scholar 

  • Hameed S, Dhamgaye S, Singh A, Goswami SK, Prasad R (2011) Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PLoS ONE 6(4):e18684. doi:10.1371/journal.pone.0018684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hameed S, Prasad T, Banerjee D, Chandra A, Mukhopadhyay CK, Goswami SK, Lattif AA, Chandra J, Mukherjee PK, Ghannoum MA, Prasad R (2008) Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. FEMS Yeast Res 8(5):744–755

    Article  CAS  PubMed  Google Scholar 

  • Hammacott JE, Williams PH, Cashmore AM (2000) Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146(Pt 4):869–876

    Article  CAS  PubMed  Google Scholar 

  • Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF (2002) The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 70(9):5246–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzberg M, Artis WM (1983) Hydroxamate siderophore production by opportunistic and systemic fungal pathogens. Infect Immun 40(3):1134–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Homann OR, Dea J, Noble SM, Johnson AD (2009) A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5(12):e1000783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998) Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459

    Article  CAS  PubMed  Google Scholar 

  • Hsu PC, Chao CC, Yang CY, Ye YL, Liu FC, Chuang YJ, Lan CY (2013) Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex. Eukaryot Cell 12:804–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PC, Yang CY, Lan CY (2011) Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryot Cell 10(2):207–225. doi:10.1128/EC.00158-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CJ, Bai C, Zheng XD, Wang YM, Wang Y (2002) Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J Biol Chem 277(34):30598–30605

    Article  CAS  PubMed  Google Scholar 

  • Ibtissem G, Frédérique B, Pierre G, Sandrine G, SILAR P (2010) The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes. Fungal Biology 114:766–777

    Google Scholar 

  • Ismail A, Bedell GW, Lupan DM (1985) Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun 130(2):885–891

    Article  CAS  PubMed  Google Scholar 

  • Jeeves RE, Mason RP, Woodacre A, Cashmore AM (2011) Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans. Yeast 28:629–644

    Article  CAS  PubMed  Google Scholar 

  • Kaba HE, Nimtz M, Muller PP, Bilitewski U (2013) Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability. BMC Microbiol 13:16. doi:10.1186/1471-2180-13-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 109(10):4536–4552. doi:10.1021/cr9001676

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Yun CW, Philpott CC (2002) Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in saccharomyces cerevisiae. EMBO J 21(14):3632–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight SA, Lesuisse E, Stearman R, Klausner RD, Dancis A (2002) Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148(Pt 1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Knight SA, Vilaire G, Lesuisse E, Dancis A (2005) Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73(9):5482–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli A, Smriti NFN, Mukhopadhyay K, Rattan A, Prasad R (2002) In vitro low-level resistance to azoles in candida albicans is associated with changes in membrane lipid fluidity and asymmetry. Antimicrob Agents Chemother 46(4):1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47(5):1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ (1999) Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob Agents Chemother 43(11):2635–2641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D (2014) A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 10(10):e1004407. doi:10.1371/journal.ppat.1004407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwok EY, Severance S, Kosman DJ (2006) Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Biochemistry 45(20):6317–6327. doi:10.1021/bi052173c

    Article  CAS  PubMed  Google Scholar 

  • Lamarre C, Deslauriers N, Bourbonnais Y (2000) Expression cloning of the Candida albicans CSA1 gene encoding a mycelial surface antigen by sorting of Saccharomyces cerevisiae transformants with monoclonal antibody-coated magnetic beads. Mol Microbiol 35(2):444–453

    Article  CAS  PubMed  Google Scholar 

  • Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, Dungan J, Newport G, Agabian N (2004) Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol 53(5):1451–1469

    Article  CAS  PubMed  Google Scholar 

  • Lesuisse E, Knight SA, Camadro JM, Dancis A (2002) Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast 19(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  PubMed  Google Scholar 

  • Li L, Bagley D, Ward DM, Kaplan J (2008) Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 28(4):1326–1337

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Gui L, Wei DS, Zheng W, Xing LJ, Li MC (2009a) Candida albicans ferric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor. FEMS Yeast Res 9(2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zheng W, Wei D, Xing L, Li M (2009b) Function of ferric reductase FRP1 gene in Candida albicans. Wei Sheng Wu Xue Bao 49(3):337–342

    CAS  PubMed  Google Scholar 

  • Liang Y, Wei D, Wang H, Xu N, Zhang B, Xing L, Li M (2010) Role of Candida albicans Aft2p transcription factor in ferric reductase activity, morphogenesis and virulence. Microbiology 156(Pt 10):2912–2919. doi:10.1099/mic.0.037978-0

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hou Y, Liu W, Lu C, Wang W, Sun S (2015) Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryot Cell 14(4):324–334. doi:10.1128/EC.00271-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manns JM, Mosse DM, Buckley HR (1994) Production of a hemolytic factor by Candida albicans. Infect Immun 62:5154–5156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min K, Ichikawa Y, Woolford CA, Mitchell AP (2016) Candida albicans gene deletion with a transient CRISPR-Cas9 system. mSphere 1(3):e00130–00116. doi:10.1128/mSphere.00130-16

  • Moore RE, Kim Y, Philpott CC (2003) The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100(10):5664–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moors MA, Stull TL, Blank KJ, Buckley HR, Mosser DM (1992) A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175(6):1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Morschhauser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47(2):94–106. doi:10.1016/j.fgb.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46(12):3695–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarathna DH, Roberts DD (2010) Candida albicans heme oxygenase and its product CO contribute to pathogenesis of candidemia and alter systemic chemokine and cytokine expression. Free Radic Biol Med 49(10):1561–1573. doi:10.1016/j.freeradbiomed.2010.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, Nantel A, Mitchell AP, Filler SG (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10(11):2180–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble SM (2013) Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol. doi:10.1016/j.mib.2013.09.006

    PubMed  PubMed Central  Google Scholar 

  • Noble SM, French S, Kohn LA, Chen V, Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42(7):590–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier B, Mercier A, Durand M, Peter C, Jbel M, Beaudoin J, Labbe S (2007) Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors. Yeast 24(10):883–900

    Article  CAS  PubMed  Google Scholar 

  • Pendrak ML, Chao MP, Yan SS, Roberts DD (2004a) Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J Biol Chem 279(5):3426–3433

    Article  CAS  PubMed  Google Scholar 

  • Pendrak ML, Yan SS, Roberts DD (2004b) Sensing the host environment: recognition of hemoglobin by the pathogenic yeast Candida albicans. Arch Biochem Biophys 426(2):148–156

    Article  CAS  PubMed  Google Scholar 

  • Pendrak ML, Roberts DD (2007) Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans. Med Mycol 45(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Perez A, Ramage G, Blanes R, Murgui A, Casanova M, Martinez JP (2011) Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain. FEMS Yeast Res 11(3):273–284. doi:10.1111/j.1567-1364.2010.00714.x

    Article  CAS  PubMed  Google Scholar 

  • Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763(7):636–645

    Article  CAS  PubMed  Google Scholar 

  • Philpott CC, Protchenko O (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Portnoy ME, Liu XF, Culotta VC (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol 20(21):7893–7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potrykus J, Stead D, MacCallum DM, Urgast DS, Raab A, van Rooijen N, Jr F, Brown AJP (2013) Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events. PLoS Pathog 9(10):e1003676. doi:10.1371/journal.ppat.1003676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad T, Chandra A, Mukhopadhyay CK, Prasad R (2006) Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 50(11):3597–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig S, Askeland E, Thiele DJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274(8):4481–4484

    Article  CAS  PubMed  Google Scholar 

  • Ramanan N, Wang Y (2000) A high-affinity iron permease essential for Candida albicans virulence. Science 288(5468):1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Ramon AM, Fonzi WA (2003) Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2(4):718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohm M, Lindemann E, Hiller E, Ermert D, Lemuth K, Trkulja D, Sogukpinar O, Brunner H, Rupp S, Urban CF, Sohn K (2013) A family of secreted pathogenesis-related proteins in Candida albicans. Mol Microbiol 87(1):132–151. doi:10.1111/mmi.12087

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Buisson N, Knight S, Dancis A, Camadro JM, Lesuisse E (2003) Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149(Pt 3):579–588

    Article  CAS  PubMed  Google Scholar 

  • Schillig R, Morschhäuser J (2013) Analysis of a fungus-specific transcription factor family, the Candida albicans zinc cluster proteins, by artificial activation. Mol Microbiol 89(5):1003–1017. doi:10.1111/mmi.12327

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75(2):213–267. doi:10.1128/mmbr.00045-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Prasad HK, Sinha I, Agarwal N, Natarajan K (2011) Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem 286(28):25154–25170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosinska GJ, de Groot PW, Teixeira de Mattos MJ, Dekker HL, de Koster CG, Hellingwerf KJ, Klis FM (2008) Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 154(Pt 2):510–520

    Article  CAS  PubMed  Google Scholar 

  • Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J (2007) Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5(6):418–430. doi:10.1038/nrmicro1680

    Article  CAS  PubMed  Google Scholar 

  • Sweet SP, Douglas LJ (1991) Effect of iron concentration on siderophore synthesis and pigment production by Candida albicans. FEMS Microbiol Lett 64(1):87–91

    Article  CAS  PubMed  Google Scholar 

  • Synnott JM, Guida A, Mulhern-Haughey S, Higgins DG, Butler G (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell 9:1734–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka WT, Nakao N, Mikami T, Matsumoto T (1997) Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form. Biochem Biophys Res Commun 232(2):350–353

    Article  CAS  PubMed  Google Scholar 

  • Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63(6):1606–1628

    Article  CAS  PubMed  Google Scholar 

  • Van Ho A, Ward DM, Kaplan J (2002) Transition metal transport in yeast. Annu Rev Microbiol 56:237–261. doi:10.1146/annurev.micro.56.012302.160847

    Article  PubMed  CAS  Google Scholar 

  • Vasicek EM, Berkow EL, Flowers SA, Barker KS, Rogers PD (2014) UPC2 is universally essential for azole antifungal resistance in Candida albicans. Eukaryot Cell 13(7):933–946. doi:10.1128/ec.00221-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vergara SV, Thiele DJ (2008) Post-transcriptional regulation of gene expression in response to iron deficiency: co-ordinated metabolic reprogramming by yeast mRNA-binding proteins. Biochem Soc Trans 36(5):1088–1090. doi:10.1042/BST0361088

    Article  CAS  PubMed  Google Scholar 

  • Vyas VK, Barrasa MI, Fink GR (2015) A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1(3):e1500248. doi:10.1126/sciadv.1500248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe T, Takano M, Murakami M, Tanaka H, Matsuhisa A, Nakao N, Mikami T, Suzuki M, Matsumoto T (1999) Characterization of a haemolytic factor from Candida albicans. Microbiology 145(Pt 3):689–694. doi:10.1099/13500872-145-3-689

    Article  CAS  PubMed  Google Scholar 

  • Weissman Z, Kornitzer D (2004) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53(4):1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Weissman Z, Shemer R, Conibear E, Kornitzer D (2008) An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69(1):201–217

    Article  CAS  PubMed  Google Scholar 

  • Weissman Z, Shemer R, Kornitzer D (2002) Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol 44(6):1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Wolf JM, Johnson DJ, Chmielewski D, Davis DA (2010) The Candida albicans ESCRT pathway makes Rim101-dependent and -independent contributions to pathogenesis. Eukaryot Cell 9(8):1203–1215. doi:10.1128/EC.00056-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodacre A, Mason RP, Jeeves RE, Cashmore AM (2008) Copper-dependent transcriptional regulation by Candida albicans Mac1p. Microbiology 154(Pt 5):1502–1512

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Cheng X, Yu Q, Qian K, Ding X, Liu R, Zhang B, Xing L, Li M (2013) Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans. PLoS ONE 8(4):e62367. doi:10.1371/journal.pone.0062367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu N, Dong Y, Cheng X, Yu Q, Qian K, Mao J, Jia C, Ding X, Zhang B, Chen Y, Zhang B, Xing L, Li M (2014a) Cellular iron homeostasis mediated by the Mrs4–Ccc1–Smf3 pathway is essential for mitochondrial function, morphogenesis and virulence in Candida albicans. Biochim Biophys Acta 1843:629–639

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Qian K, Dong Y, Chen Y, Yu Q, Zhang B, Xing L, Li M (2014b) Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Res Microbiol 165(3):252–261. doi:10.1016/j.resmic.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Solis NV, Ehrlich RL, Woolford CA, Filler SG, Mitchell AP (2015) Activation and alliance of regulatory pathways in C. albicans during mammalian infection. PLoS Biol 13(2):e1002076. doi:10.1371/journal.pbio.1002076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu S-J, Chang Y-L, Chen Y-L (2015) Calcineurin signaling: lessons from Candida species. FEMS Yeast Res 15(4). doi:10.1093/femsyr/fov016

  • Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9:2938–2954

    Article  CAS  PubMed  Google Scholar 

  • Ziegler L, Terzulli A, Gaur R, McCarthy R, Kosman DJ (2011) Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans. Mol Microbiol 81(2):473–485. doi:10.1111/j.1365-2958.2011.07704.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnamurthy Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Srivastav, M.K., Nair, R., Natarajan, K. (2017). Iron Acquisition in the Pathobiology of Candida albicans . In: Prasad, R. (eds) Candida albicans: Cellular and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-50409-4_17

Download citation

Publish with us

Policies and ethics