Advertisement

Genome Diversity and Dynamics in Candida albicans

  • Christophe d’Enfert
  • Marie-Elisabeth Bougnoux
  • Adeline Feri
  • Mélanie Legrand
  • Raphaël Loll-Krippleber
  • Timea Marton
  • Corinne Maufrais
  • Jeanne Ropars
  • Natacha Sertour
  • Emilie Sitterlé
Chapter

Abstract

The fungal pathogen Candida albicans shows significant diversity at the genetic and phenotypic levels. In this Chapter, we review our current knowledge of the C. albicans diploid genome and its variability, the genetic structure of the C. albicans population and the mechanisms that are involved in C. albicans genome dynamics, with a focus on the parasexual cycle and loss-of-heterozygosity events. We further explore the impact of genetic diversity and genome dynamics on C. albicans phenotypic diversity. Finally, we discuss how our current knowledge of C. albicans genetic diversity could be leveraged in the future in order to get insights in the mechanisms underlying important biological attributes that are subject to variations across C. albicans isolates.

Keywords

Ergosterol Biosynthesis Azole Resistance Oropharyngeal Candidiasis Strain SC5314 Genome Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research in the Fungal Biology and Pathogenicty Unit on the topic of genetic diversity and genome dynamics in C. albicans has been funded by Institut Pasteur and Institut National de la Recherche Agronomique. AF is the recipient of a PhD fellowship from INRA and Institut Pasteur. RLK was the recipient of a PhD fellowship from INRA and Institut Pasteur. JR is the recipient of Roux post-doctoral fellowship from Institut Pasteur. ES is the recipient of a PhD fellowship from the DIM-MalInf from Région Ile-de-France. We acknowledge support from the French Government’s Investissement d’Avenir program (Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases, ANR-10-LABX-62-IBEID).

References

  1. Abbey D, Hickman M, Gresham D, Berman J (2011) High-resolution SNP/CGH microarrays reveal the accumulation of loss of heterozygosity in commonly used Candida albicans strains. G3 (Bethesda) 1(7):523–530. doi: 10.1534/g3.111.000885
  2. Andaluz E, Bellido A, Gomez-Raja J, Selmecki A, Bouchonville K, Calderone R, Berman J, Larriba G (2011) Rad52 function prevents chromosome loss and truncation in Candida albicans. Mol Microbiol 79(6):1462–1482. doi: 10.1111/j.1365-2958.2011.07532.x PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson JB, Wickens C, Khan M, Cowen LE, Federspiel N, Jones T, Kohn LM (2001) Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J Bacteriol 183:865–872PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson MZ, Baller JA, Dulmage K, Wigen L, Berman J (2012) The three clades of the telomere-associated TLO gene family of Candida albicans have different splicing, localization, and expression features. Eukaryot Cell 11(10):1268–1275. doi: 10.1128/EC.00230-12 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Angebault C, Djossou F, Abelanet S, Permal E, Ben Soltana M, Diancourt L, Bouchier C, Woerther PL, Catzeflis F, Andremont A, d’Enfert C, Bougnoux ME (2013) Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J Infect Dis 208(10):1705–1716. doi: 10.1093/infdis/jit389 PubMedCrossRefGoogle Scholar
  6. Arbour M, Epp E, Hogues H, Sellam A, Lacroix C, Rauceo J, Mitchell A, Whiteway M, Nantel A (2009) Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants. FEMS Yeast Res 9(7):1070–1077. doi: 10.1111/j.1567-1364.2009.00563.x PubMedPubMedCentralCrossRefGoogle Scholar
  7. Azie N, Neofytos D, Pfaller M, Meier-Kriesche HU, Quan SP, Horn D (2012) The PATH (Prospective Antifungal Therapy) Alliance(R) registry and invasive fungal infections: update 2012. Diag Microbiol Infec Dis 73(4):293–300. doi: 10.1016/j.diagmicrobio.2012.06.012 CrossRefGoogle Scholar
  8. Bennett RJ, Johnson AD (2003) Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 22(10):2505–2515PubMedPubMedCentralCrossRefGoogle Scholar
  9. Binkley J, Arnaud MB, Inglis DO, Skrzypek MS, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G (2014) The Candida genome database: the new homology information page highlights protein similarity and phylogeny. Nucleic Acids Res 42 (Database issue):D711–716. doi: 10.1093/nar/gkt1046
  10. Blignaut E, Molepo J, Pujol C, Soll DR, Pfaller MA (2005) Clade-related amphotericin B resistance among South African Candida albicans isolates. Diagn Microbiol Infect Dis 53(1):29–31PubMedCrossRefGoogle Scholar
  11. Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346PubMedCrossRefGoogle Scholar
  12. Boisrame A, Cornu A, Da Costa G, Richard ML (2011) Unexpected role for a serine/threonine-rich domain in the Candida albicans Iff protein family. Eukaryot Cell 10(10):1317–1330. doi: 10.1128/EC.05044-11 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Botterel F, Desterke C, Costa C, Bretagne S (2001) Analysis of microsatellite markers of Candida albicans used for rapid typing. J Clin Microbiol 39(11):4076–4081PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bouchonville K, Forche A, Tang KE, Selmecki A, Berman J (2009) Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. Eukaryot Cell 8(10):1554–1566. doi: 10.1128/EC.00209-09 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bougnoux ME, Aanensen DM, Morand S, Theraud M, Spratt BG, d’Enfert C (2004) Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. Infect Genet Evol 4(3):243–252PubMedCrossRefGoogle Scholar
  16. Bougnoux ME, Diogo D, Francois N, Sendid B, Veirmeire S, Colombel JF, Bouchier C, Van Kruiningen H, d’Enfert C, Poulain D (2006) Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol 44(5):1810–1820PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bougnoux ME, Diogo D, Pujol C, Soll DR, d’Enfert C (2007) Molecular epidemiology and population dynamics in Candida albicans. In: d’Enfert C, Hube B (eds) Candida: comparative and fucntional genomics. Caister Academic Press, Wymondham, United Kingdom, pp 51–70Google Scholar
  18. Bougnoux ME, Morand S, d’Enfert C (2002) Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. J Clin Microbiol 40(4):1290–1297PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bougnoux ME, Pujol C, Diogo D, Bouchier C, Soll DR, d’Enfert C (2008) Mating is rare within as well as between clades of the human pathogen Candida albicans. Fungal Genet Biol 45(3):221–231PubMedCrossRefGoogle Scholar
  20. Bougnoux ME, Tavanti A, Bouchier C, Gow NA, Magnier A, Davidson AD, Maiden MC, D’Enfert C, Odds FC (2003) Collaborative consensus for optimized multilocus sequence typing of Candida albicans. J Clin Microbiol 41(11):5265–5266PubMedPubMedCentralCrossRefGoogle Scholar
  21. Braun BR, van Het Hoog M, d’Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A, Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, Iouk T, Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates S, Gow NA, Hoyer LL, Kohler G, Morschhauser J, Newport G, Znaidi S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M, Nantel A (2005) A Human-Curated Annotation of the Candida albicans Genome. PLoS Genet 1(1):36–57PubMedCrossRefGoogle Scholar
  22. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Science Transl Med 4(165):165rv113. doi: 10.1126/scitranslmed.3004404
  23. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459(7247):657–662. doi: 10.1038/nature08064
  24. Calderon-Norena DM, Gonzalez-Novo A, Orellana-Munoz S, Gutierrez-Escribano P, Arnaiz-Pita Y, Duenas-Santero E, Suarez MB, Bougnoux ME, Del Rey F, Sherlock G, d’Enfert C, Correa-Bordes J, de Aldana CR (2015) A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development. PLoS Genet 11(4):e1005152. doi: 10.1371/journal.pgen.1005152 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chibana H, Beckerman JL, Magee PT (2000) Fine-resolution physical mapping of genomic diversity in Candida albicans. Genome Res 10(12):1865–1877PubMedCrossRefGoogle Scholar
  26. Chibana H, Iwaguchi S, Homma M, Chindamporn A, Nakagawa Y, Tanaka K (1994) Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of Candida albicans. J Bacteriol 176(13):3851–3858PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chibana H, Magee BB, Grindle S, Ran Y, Scherer S, Magee PT (1998) A physical map of chromosome 7 of Candida albicans. Genetics 149(4):1739–1752PubMedPubMedCentralGoogle Scholar
  28. Chibana H, Magee PT (2009) The enigma of the major repeat sequence of Candida albicans. Future Microbiol 4(2):171–179. doi: 10.2217/17460913.4.2.171 PubMedCrossRefGoogle Scholar
  29. Chindamporn A, Nakagawa Y, Homma M, Chibana H, Doi M, Tanaka K (1995) Analysis of the chromosomal localization of the repetitive sequences (RPSs) in Candida albicans. Microbiology 141 (Pt 2):469–476. doi: 10.1099/13500872-141-2-469
  30. Chindamporn A, Nakagawa Y, Mizuguchi I, Chibana H, Doi M, Tanaka K (1998) Repetitive sequences (RPSs) in the chromosomes of Candida albicans are sandwiched between two novel stretches, HOK and RB2, common to each chromosome. Microbiology 144(Pt 4):849–857. doi: 10.1099/00221287-144-4-849
  31. Chu WS, Magee BB, Magee PT (1993) Construction of an SfiI macrorestriction map of the Candida albicans genome. J Bacteriol 175(20):6637–6651PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ciudad T, Hickman M, Bellido A, Berman J, Larriba G (2016) The phenotypic consequences of a spontaneous loss of heterozygosity in a common laboratory strain of Candida albicans. Genetics. doi: 10.1534/genetics.116.189274 PubMedGoogle Scholar
  33. Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d’Enfert C, Berman J, Sanglard D (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6(10):1889–1904PubMedPubMedCentralCrossRefGoogle Scholar
  34. Coste A, Turner V, Ischer F, Morschhauser J, Forche A, Selmecki A, Berman J, Bille J, Sanglard D (2006) A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172(4):2139–2156PubMedPubMedCentralCrossRefGoogle Scholar
  35. Diogo D, Bouchier C, d’Enfert C, Bougnoux ME (2009) Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet Biol 46 (2):159–168. doi: 10.1016/j.fgb.2008.11.005
  36. Dodgson AR, Dodgson KJ, Pujol C, Pfaller MA, Soll DR (2004) Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother 48(6):2223–2227PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dunkel N, Liu TT, Barker KS, Homayouni R, Morschhauser J, Rogers PD (2008) A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 7(7):1180–1190. doi: 10.1128/EC.00103-08
  38. Feri A, Loll-Krippleber, Commere PH, Maufrais C, Sertour N, Schwartz K, Sherlock G, Bougnoux ME, d’Enfert C, Legrand M (2016) Analysis of repair mechanisms following an induced double-strand break uncovers recessive deleterious alleles in the Candida albicans diploid genome. MBio 7(5):e01109–01116. doi: 10.1128/mBio.01109-16
  39. Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, Petersen K, Berman J (2011) Stress alters rates and types of loss of heterozygosity in Candida albicans. MBio 2(4):e00129–00111. doi: 10.1128/mBio.00129-11 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ (2008) The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6(5):e110PubMedPubMedCentralCrossRefGoogle Scholar
  41. Forche A, Magee PT, Magee BB, May G (2004) Genome-wide single-nucleotide polymorphism map for Candida albicans. Eukaryot Cell 3(3):705–714PubMedPubMedCentralCrossRefGoogle Scholar
  42. Forche A, Magee PT, Selmecki A, Berman J, May G (2009a) Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182(3):799–811. doi: 10.1534/genetics.109.103325 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Forche A, May G, Beckerman J, Kauffman S, Becker J, Magee PT (2003) A system for studying genetic changes in Candida albicans during infection. Fungal Genet Biol 39(1):38–50PubMedCrossRefGoogle Scholar
  44. Forche A, May G, Magee PT (2005) Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryot Cell 4(1):156–165PubMedPubMedCentralCrossRefGoogle Scholar
  45. Forche A, Steinbach M, Berman J (2009b) Efficient and rapid identification of Candida albicans allelic status using SNP-RFLP. FEMS Yeast Res 9(7):1061–1069. doi: 10.1111/j.1567-1364.2009.00542.x PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A (2015) The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4:e00662. doi: 10.7554/eLife.00662 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198(1):179–182PubMedCrossRefGoogle Scholar
  48. Gomez-Raja J, Andaluz E, Magee B, Calderone R, Larriba G (2008) A single SNP, G929T (Gly310Val), determines the presence of a functional and a non-functional allele of HIS4 in Candida albicans SC5314: detection of the non-functional allele in laboratory strains. Fungal Genet Biol 45(4):527–541. doi: 10.1016/j.fgb.2007.08.008 PubMedCrossRefGoogle Scholar
  49. Gorman JA, Gorman JW, Koltin Y (1992) Direct selection of galactokinase-negative mutants of Candida albicans using 2-deoxy-galactose. Curr Genet 21(3):203–206PubMedCrossRefGoogle Scholar
  50. Greenberg JR, Price NP, Oliver RP, Sherman F, Rustchenko E (2005) Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization. Yeast 22(12):957–969. doi: 10.1002/yea.1282 PubMedCrossRefGoogle Scholar
  51. Haran J, Boyle H, Hokamp K, Yeomans T, Liu Z, Church M, Fleming AB, Anderson MZ, Berman J, Myers LC, Sullivan DJ, Moran GP (2014) Telomeric ORFs (TLOs) in Candida spp. Encode mediator subunits that regulate distinct virulence traits. PLoS Genet 10(10):e1004658. doi: 10.1371/journal.pgen.1004658 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Harrison BD, Hashemi J, Bibi M, Pulver R, Bavli D, Nahmias Y, Wellington M, Sapiro G, Berman J (2014) A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol 12(3):e1001815. doi: 10.1371/journal.pbio.1001815 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hickman MA, Paulson C, Dudley A, Berman J (2015) Parasexual ploidy reduction drives population heterogeneity through random and transient aneuploidy in Candida albicans. Genetics 200(3):781–794. doi: 10.1534/genetics.115.178020 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang YM, Su CH, Bennett RJ, Wang Y, Berman J (2013) The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494(7435):55–59. doi: 10.1038/nature11865 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, Zeng Q, Zisson E, Wang JM, Greenberg JM, Berman J, Bennett RJ, Cuomo CA (2014) Genetic and phenotypic intra-species variation in Candida albicans. Genome Res in press. doi: 10.1101/gr.174623.114
  56. Hope WW, Tabernero L, Denning DW, Anderson MJ (2004) Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 48(11):4377–4386. doi: 10.1128/AAC.48.11.4377-4386.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hoyer LL, Cota E (2016) Candida albicans Agglutinin-Like Sequence (Als) family vignettes: a review of Als protein structure and function. Front Microbiol 7:280. doi: 10.3389/fmicb.2016.00280 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hull CM, Johnson AD (1999) Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285(5431):1271–1275PubMedCrossRefGoogle Scholar
  59. Hull CM, Raisner RM, Johnson AD (2000) Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289(5477):307–310PubMedCrossRefGoogle Scholar
  60. Iwaguchi S, Homma M, Chibana H, Tanaka K (1992a) Isolation and characterization of a repeated sequence (RPS1) of Candida albicans. J Gen Microbiol 138(9):1893–1900. doi: 10.1099/00221287-138-9-1893 PubMedCrossRefGoogle Scholar
  61. Iwaguchi S, Homma M, Tanaka K (1992b) Clonal variation of chromosome size derived from the rDNA cluster region in Candida albicans. J Gen Microbiol 138(6):1177–1184. doi: 10.1099/00221287-138-6-1177 PubMedCrossRefGoogle Scholar
  62. Jacobsen MD, Bougnoux ME, d’Enfert C, Odds FC (2008) Multilocus sequence typing of Candida albicans isolates from animals. Res Microbiol 159(6):436–440PubMedCrossRefGoogle Scholar
  63. Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41(2):383–394PubMedCrossRefGoogle Scholar
  64. Janbon G, Sherman F, Rustchenko E (1998) Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc Natl Acad Sci U S A 95(9):5150–5155PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101(19):7329–7334PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jung SI, Shin JH, Kim SH, Kim J, Kim JH, Choi MJ, Chung EK, Lee K, Koo SH, Chang HH, Bougnoux ME, d’Enfert C (2016) Comparison of E, E-Farnesol secretion and the clinical characteristics of Candida albicans bloodstream isolates from different multilocus sequence typing clades. PLoS ONE 11(2):e0148400. doi: 10.1371/journal.pone.0148400 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kabir MA, Ahmad A, Greenberg JR, Wang YK, Rustchenko E (2005) Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators. Proc Natl Acad Sci U S A 102(34):12147–12152. doi: 10.1073/pnas.0505625102 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88(3):375–384PubMedCrossRefGoogle Scholar
  69. Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, Collins C, Tullis DE, Nislow C, Hwang DM, Guttman DS, Cowen LE (2015) Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog 11(11):e1005308. doi: 10.1371/journal.ppat.1005308 PubMedPubMedCentralCrossRefGoogle Scholar
  70. L’Ollivier C, Labruere C, Jebrane A, Bougnoux ME, d’Enfert C, Bonnin A, Dalle F (2012) Using a multi-locus microsatellite typing method improved phylogenetic distribution of Candida albicans isolates but failed to demonstrate association of some genotype with the commensal or clinical origin of the isolates. Infection, Genetics Evolution: J Molecular Epidemiol Evolutionary Genetics Infectious Diseases 12(8):1949–1957. doi: 10.1016/j.meegid.2012.07.025 CrossRefGoogle Scholar
  71. Lee SC, Ni M, Li W, Shertz C, Heitman J (2010) The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74(2):298–340. doi: 10.1128/MMBR.00005-10 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lephart PR, Chibana H, Magee PT (2005) Effect of the major repeat sequence on chromosome loss in Candida albicans. Eukaryot Cell 4(4):733–741PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149(Pt 2):353–362. doi: 10.1099/mic.0.25932-0 PubMedCrossRefGoogle Scholar
  74. Lockhart SR, Fritch JJ, Meier AS, Schroppel K, Srikantha T, Galask R, Soll DR (1995) Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. J Clin Microbiol 33(6):1501–1509PubMedPubMedCentralGoogle Scholar
  75. Lockhart SR, Pujol C, Daniels KJ, Miller MG, Johnson AD, Pfaller MA, Soll DR (2002) In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162(2):737–745PubMedPubMedCentralGoogle Scholar
  76. Loll-Krippleber R, d’Enfert C, Feri A, Diogo D, Perin A, Marcet-Houben M, Bougnoux ME, Legrand M (2014) A study of the DNA damage checkpoint in Candida albicans: uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth. Mol Microbiol 91(3):452–471. doi: 10.1111/mmi.12471
  77. Loll-Krippleber R, Feri A, d’Enfert C, M. L (2015a) Genome integrity: mechanisms and contribution to antifungal resistance. In: Coste A, Vandeputte P (eds) Antifungals: from genomics to resistance and the development of novel agents. Caister Academic Press, Norfolk, UK, pp 211–236Google Scholar
  78. Loll-Krippleber R, Feri A, Nguyen M, Maufrais C, Yansouni J, d’Enfert C, Legrand M (2015) A FACS-optimized screen identifies regulators of genome stability in Candida albicans. Eukaryot Cell 14(3):311–322. doi: 10.1128/EC.00286-14 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Maccallum DM, Castillo L, Nather K, Munro CA, Brown AJ, Gow NA, Odds FC (2009) Property differences among the four major Candida albicans strain clades. Eukaryot Cell 8:373–387PubMedPubMedCentralCrossRefGoogle Scholar
  80. Magee BB, Magee PT (2000) Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289(5477):310–313PubMedCrossRefGoogle Scholar
  81. Magwene PM, Kayikci O, Granek JA, Reininga JM, Scholl Z, Murray D (2011) Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 108(5):1987–1992. doi: 10.1073/pnas.1012544108 PubMedPubMedCentralCrossRefGoogle Scholar
  82. McManus BA, Coleman DC (2014) Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol 21:166–178. doi: 10.1016/j.meegid.2013.11.008 PubMedCrossRefGoogle Scholar
  83. Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110(3):293–302PubMedCrossRefGoogle Scholar
  84. Monteilhet C, Perrin A, Thierry A, Colleaux L, Dujon B (1990) Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Res 18(6):1407–1413PubMedPubMedCentralCrossRefGoogle Scholar
  85. Morio F, Pagniez F, Lacroix C, Miegeville M, Le Pape P (2012) Amino acid substitutions in the Candida albicans sterol Delta 5,6-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence. J Antimicrob Chemother 67(9):2131–2138. doi: 10.1093/jac/dks186 PubMedCrossRefGoogle Scholar
  86. Morschhauser J, Barker KS, Liu TT, Bla BWJ, Homayouni R, Rogers PD (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3(11):e164. doi: 10.1371/journal.ppat.0030164 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Muzzey D, Schwartz K, Weissman JS, Sherlock G (2013) Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14(9):R97. doi: 10.1186/gb-2013-14-9-r97 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Muzzey D, Sherlock G, Weissman JS (2014) Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res 24(6):963–973. doi: 10.1101/gr.166322.113 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Navarro-Garcia F, Perez-Diaz RM, Magee BB, Pla J, Nombela C, Magee P (1995) Chromosome reorganization in Candida albicans 1001 strain. J Med Vet Mycol 33(6):361–366PubMedCrossRefGoogle Scholar
  90. Niimi K, Monk BC, Hirai A, Hatakenaka K, Umeyama T, Lamping E, Maki K, Tanabe K, Kamimura T, Ikeda F, Uehara Y, Kano R, Hasegawa A, Cannon RD, Niimi M (2010) Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. J Antimicrob Chemother 65(5):842–852. doi: 10.1093/jac/dkq073 PubMedCrossRefGoogle Scholar
  91. Odds FC (2009) In Candida albicans, resistance to flucytosine and terbinafine is linked to MAT locus homozygosity and multilocus sequence typing clade 1. FEMS Yeast Res 9(7):1091–1101. doi: 10.1111/j.1567-1364.2009.00577.x PubMedCrossRefGoogle Scholar
  92. Odds FC (2010) Molecular phylogenetics and epidemiology of Candida albicans. Future Microbiol 5:67–79. doi: 10.2217/fmb.09.113 PubMedCrossRefGoogle Scholar
  93. Odds FC, Bougnoux ME, Shaw DJ, Bain JM, Davidson AD, Diogo D, Jacobsen MD, Lecomte M, Li SY, Tavanti A, Maiden MC, Gow NA, d’Enfert C (2007) Molecular phylogenetics of Candida albicans. Eukaryot Cell 6:1041–1052PubMedPubMedCentralCrossRefGoogle Scholar
  94. Oh SH, Cheng G, Nuessen JA, Jajko R, Yeater KM, Zhao X, Pujol C, Soll DR, Hoyer LL (2005) Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151(Pt 3):673–681PubMedCrossRefGoogle Scholar
  95. Orti G, Pearse DE, Avise JC (1997) Phylogenetic assessment of length variation at a microsatellite locus. Proc Natl Acad Sci U S A 94(20):10745–10749PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pujol C, Joly S, Nolan B, Srikantha R, Lockhart S, Soll D (1999) Microevolutionary changes in Candida albicans identified par le complex Ca3 probe involve insertions and deletions of RPS units at specific genomic sites. Microbiology 145:2635–2644PubMedCrossRefGoogle Scholar
  97. Pujol C, Pfaller M, Soll DR (2002) Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J Clin Microbiol 40(8):2729–2740PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pujol C, Pfaller MA, Soll DR (2004) Flucytosine resistance is restricted to a single genetic clade of Candida albicans. Antimicrob Agents Chemother 48(1):262–266PubMedPubMedCentralCrossRefGoogle Scholar
  99. Reagan DR, Pfaller MA, Hollis RJ, Wenzel RP (1990) Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J Clin Microbiol 28(12):2733–2738PubMedPubMedCentralGoogle Scholar
  100. Robert F, Lebreton F, Bougnoux ME, Paugam A, Wassermann D, Schlotterer M, Tourte-Schaefer C, Dupouy-Camet J (1995) Use of random amplified polymorphic DNA as a typing method for Candida albicans in epidemiological surveillance of a burn unit. J Clin Microbiol 33(9):2366–2371PubMedPubMedCentralGoogle Scholar
  101. Sampaio P, Gusmao L, Correia A, Alves C, Rodrigues AG, Pina-Vaz C, Amorim A, Pais C (2005) New microsatellite multiplex PCR for Candida albicans strain typing reveals microevolutionary changes. J Clin Microbiol 43(8):3869–3876. doi: 10.1128/JCM.43.8.3869-3876.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MS, Samad S, Carr M, Parr D, McKinney W, Schousboe M, Harris B, Ikram R, Harris M, Restrepo A, Hoyos G, Singh KP (1999) Evidence for a general-purpose genotype in Candida albicans, highly prevalent in multiple geographical regions, patient types and types of infection. Microbiology 145(Pt 9):2405–2413PubMedCrossRefGoogle Scholar
  103. Schmid J, Magee PT, Holland BR, Zhang N, Cannon RD, Magee BB (2016) Last hope for the doomed? Thoughts on the importance of a parasexual cycle for the yeast Candida albicans. Curr Genet 62(1):81–85. doi: 10.1007/s00294-015-0516-8 PubMedCrossRefGoogle Scholar
  104. Schmid J, Voss E, Soll DR (1990) Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J Clin Microbiol 28(6):1236–1243PubMedPubMedCentralGoogle Scholar
  105. Selmecki A, Bergmann S, Berman J (2005) Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol 55(5):1553–1565PubMedCrossRefGoogle Scholar
  106. Selmecki A, Forche A, Berman J (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313(5785):367–370. doi: 10.1126/science.1128242 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Selmecki A, Forche A, Berman J (2010) Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryot Cell 9 (7):991–1008. doi: 10.1128/EC.00060-10
  108. Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J (2008) An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol Microbiol 68(3):624–641. doi: 10.1111/j.1365-2958.2008.06176.x PubMedCrossRefGoogle Scholar
  109. Seneviratne CJ, Zeng G, Truong T, Sze S, Wong W, Samaranayake L, Chan FY, Wang YM, Wang H, Gao J, Wang Y (2015) New “haploid biofilm model” unravels IRA2 as a novel regulator of Candida albicans biofilm formation. Sci Rep 5:12433. doi: 10.1038/srep12433 PubMedCrossRefGoogle Scholar
  110. Shin JH, Bougnoux ME, d’Enfert C, Kim SH, Moon CJ, Joo MY, Lee K, Kim MN, Lee HS, Shin MG, Suh SP, Ryang DW (2011) Genetic diversity among Korean Candida albicans bloodstream isolates: assessment by multilocus sequence typing and restriction endonuclease analysis of genomic DNA by use of BssHII. J Clin Microbiol 49(7):2572–2577. doi: 10.1128/JCM.02153-10 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Soll DR (2000) The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev 13(2):332–370PubMedPubMedCentralCrossRefGoogle Scholar
  112. Symington LS, Rothstein R, Lisby M (2014) Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198(3):795–835. doi: 10.1534/genetics.114.166140 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tavanti A, Davidson AD, Fordyce MJ, Gow NA, Maiden MC, Odds FC (2005) Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J Clin Microbiol 43(11):5601–5613PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tavanti A, Gow NA, Senesi S, Maiden MC, Odds FC (2003) Optimization and validation of multilocus sequence typing for Candida albicans. J Clin Microbiol 41(8):3765–3776PubMedPubMedCentralCrossRefGoogle Scholar
  115. Thrash-Bingham C, Gorman JA (1993) Identification, characterization and sequence of Candida albicans repetitive DNAs Rel-1 and Rel-2. Curr Genet 23(5–6):455–462PubMedCrossRefGoogle Scholar
  116. Tietz HJ, Hopp M, Schmalreck A, Sterry W, Czaika V (2001) Candida africana sp. nov., a new human pathogen or a variant of Candida albicans? Mycoses 44(11–12):437–445PubMedCrossRefGoogle Scholar
  117. Tzung KW, Williams RM, Scherer S, Federspiel N, Jones T, Hansen N, Bivolarevic V, Huizar L, Komp C, Surzycki R, Tamse R, Davis RW, Agabian N (2001) Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci U S A 98(6):3249–3253PubMedPubMedCentralCrossRefGoogle Scholar
  118. van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H, Cuomo C, Berriman M, Scherer S, Magee BB, Whiteway M, Chibana H, Nantel A, Magee PT (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8(4):R52CrossRefGoogle Scholar
  119. Wrobel L, Whittington JK, Pujol C, Oh SH, Ruiz MO, Pfaller MA, Diekema DJ, Soll DR, Hoyer LL (2008) Molecular phylogenetic analysis of a geographically and temporally matched set of Candida albicans isolates from humans and nonmigratory wildlife in central Illinois. Eukaryot Cell 7 (9):1475–1486. doi: 10.1128/EC.00162-08
  120. Wu W, Lockhart SR, Pujol C, Srikantha T, Soll DR (2007) Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol Microbiol 64(6):1587–1604PubMedCrossRefGoogle Scholar
  121. Zhang A, Petrov KO, Hyun ER, Liu Z, Gerber SA, Myers LC (2012) The Tlo proteins are stoichiometric components of Candida albicans mediator anchored via the Med3 subunit. Eukaryot Cell 11(7):874–884. doi: 10.1128/EC.00095-12 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang N, Harrex AL, Holland BR, Fenton LE, Cannon RD, Schmid J (2003) Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res 13(9):2005–2017PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang N, Magee BB, Magee PT, Holland BR, Rodrigues E, Holmes AR, Cannon RD, Schmid J (2015) Selective advantages of a parasexual cycle for the yeast Candida albicans. Genetics 200(4):1117–1132. doi: 10.1534/genetics.115.1771 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christophe d’Enfert
    • 1
  • Marie-Elisabeth Bougnoux
    • 1
    • 2
  • Adeline Feri
    • 1
    • 3
  • Mélanie Legrand
    • 1
  • Raphaël Loll-Krippleber
    • 1
    • 3
  • Timea Marton
    • 1
  • Corinne Maufrais
    • 4
  • Jeanne Ropars
    • 1
  • Natacha Sertour
    • 1
  • Emilie Sitterlé
    • 1
    • 3
  1. 1.Unité Biologie et Pathogénicité FongiquesInstitut Pasteur, INRAParisFrance
  2. 2.Unité de Parasitologie-MycologieService de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique Des Hôpitaux de Paris (APHP)ParisFrance
  3. 3.Cellule PasteurUniv. Paris Diderot, Sorbonne Paris CitéParisFrance
  4. 4.Institut Pasteur, Centre d’Informatique pour la BiologieParisFrance

Personalised recommendations