Advertisement

How Hippocampal Memory Shapes, and Is Shaped by, Attention

  • Mariam Aly
  • Nicholas B. Turk-Browne

Abstract

Attention has historically been studied in the context of sensory systems, with the aim of understanding how information in the environment affects the deployment of attention and how attention in turn affects the perception of this information. More recently, there has been burgeoning interest in how long-term memory can serve as a cue for attention, and ways in which attention influences long-term memory encoding and retrieval. In this chapter, we highlight this emerging body of human behavioral, neuroimaging, and neuropsychological work that elucidates these bidirectional interactions between attention and memory. Special emphasis will be given to recent findings on how the quintessential “memory system” in the brain—the hippocampus—influences and is influenced by attention.

Keywords

Visual Search Episodic Memory Attentional State Divided Attention Explicit Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aly M, Turk-Browne NB (2016a) Attention stabilizes representations in the human hippocampus. Cereb Cortex 26:783–796PubMedGoogle Scholar
  2. Aly M, Turk-Browne NB (2016b) Attention promotes episodic encoding by stabilizing hippocampal representations. Proc Natl Acad Sci 113:E420–E429PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson MC, Levy BJ (2009) Suppressing unwanted memories. Curr Direct Psychol Sci 18:189–194CrossRefGoogle Scholar
  4. Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, Glover GH, Gabrieli JDE (2004) Neural systems underlying the suppression of unwanted memories. Science 303:232–235PubMedCrossRefGoogle Scholar
  5. Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629PubMedCrossRefGoogle Scholar
  6. Becker MW, Rasmussen IP (2008) Guidance of attention to objects and locations by long-term memory of natural scenes. J Exp Psychol Learn Mem Cogn 34:1325–1338PubMedCrossRefGoogle Scholar
  7. Brazhnik ES, Muller RU, Fox SE (2003) Muscarinic blockade slows and degrades the location-specific firing of hippocampal pyramidal cells. J Neurosci 23:611–621PubMedGoogle Scholar
  8. Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JDE (1998) Making memories: brain activity that predicts how well visual experience will be remembered. Science 281:1185–1187PubMedCrossRefGoogle Scholar
  9. Brockmole JR, Henderson JM (2006) Using real-world scenes as contextual cues for search. Vis Cogn 13:99–108CrossRefGoogle Scholar
  10. Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2:51–61PubMedCrossRefGoogle Scholar
  11. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  12. Bussey TJ, Saksida LM (2005) Object memory and perception in the medial temporal lobe: an alternative approach. Curr Opin Neurobiol 15:730–737PubMedCrossRefGoogle Scholar
  13. Carr VA, Engel SA, Knowlton BJ (2013) Top-down modulation of hippocampal encoding activity as measured by high-resolution functional MRI. Neuropsychologia 51:1829–1837PubMedCrossRefGoogle Scholar
  14. Cherry EC (1953) Experiments on the recognition of speech with one and two ears. J Acoust Soc Am 25:975CrossRefGoogle Scholar
  15. Chun MM (2000) Contextual cueing of visual attention. Trends Cogn Sci 4:170–178PubMedCrossRefGoogle Scholar
  16. Chun MM, Jiang Y (1998) Contextual cuing: implicit learning and memory of visual context guides spatial attention. Cogn Psychol 36:28–71PubMedCrossRefGoogle Scholar
  17. Chun MM, Phelps EA (1999) Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci 2:844–847PubMedCrossRefGoogle Scholar
  18. Chun MM, Turk-Browne NB (2007) Interactions between attention and memory. Curr Opin Neurobiol 17:177–184PubMedCrossRefGoogle Scholar
  19. Ciaramelli E, Lin O, Moscovitch M (2009) Episodic memory for spatial context biases spatial attention. Exp Brain Res 192:511–520PubMedCrossRefGoogle Scholar
  20. Cohen NJ, Eichenbaum H (1993) Memory, amnesia, and the hippocampal system. MIT Press, Cambridge, MAGoogle Scholar
  21. Cosman JD, Vecera SP (2013a) Context-dependent control over attentional capture. J Exp Psychol Hum Percept Perform 39:836–848PubMedCrossRefGoogle Scholar
  22. Cosman JD, Vecera SP (2013b) Learned control over distraction is disrupted in amnesia. Psychol Sci 24:1585–1590PubMedPubMedCentralCrossRefGoogle Scholar
  23. Craik FI (2001) Effects of dividing attention on encoding and retrieval processes. In: Roediger HL, Nairne JS, Neath I (eds) The nature of remembering: essays in honor of Robert G. Crowder. American Psychological Association, Washington, DC, pp 55–68CrossRefGoogle Scholar
  24. Craik FI, Govoni R, Naveh-Benjamin M, Anderson MD (1996) The effects of divided attention on encoding and retrieval processes in human memory. J Exp Psychol Gen 125:159–180PubMedCrossRefGoogle Scholar
  25. Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16:693–700PubMedCrossRefGoogle Scholar
  26. Davachi L, Wagner AD (2002) Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J Neurophysiol 88:982–990PubMedGoogle Scholar
  27. deBettencourt MT, Cohen JD, Lee RF, Norman KA, Turk-Browne NB (2015) Closed-loop training of attention with real-time brain imaging. Nat Neurosci 18:47–475CrossRefGoogle Scholar
  28. Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci 93:13494–13499PubMedPubMedCentralCrossRefGoogle Scholar
  29. Downing PE (2000) Interactions between visual working memory and selective attention. Psychol Sci 11:467–473PubMedCrossRefGoogle Scholar
  30. Dudukovic NM, Wagner AD (2007) Goal-dependent modulation of declarative memory: neural correlates of temporal recency decisions and novelty detection. Neuropsychologia 45:2608–2620PubMedCrossRefGoogle Scholar
  31. Dudukovic NM, Preston AR, Archie JJ, Glover GH, Wagner AD (2010) High-resolution fMRI reveals match enhancement and attentional modulation in the human medial temporal lobe. J Cogn Neurosci 23:670–682PubMedCrossRefGoogle Scholar
  32. Duncan K, Ketz N, Inati SJ, Davachi L (2012) Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus 22:389–398PubMedCrossRefGoogle Scholar
  33. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–187PubMedCrossRefGoogle Scholar
  34. Eldridge LL, Engel SA, Zeineh MM, Bookheimer SY, Knowlton BJ (2005) A dissociation of encoding and retrieval processes in the human hippocampus. J Neurosci 25:3280–3286PubMedCrossRefGoogle Scholar
  35. Endo N, Takeda Y (2004) Selective learning of spatial configuration and object identity in visual search. Percept Psychophys 66:293–302PubMedCrossRefGoogle Scholar
  36. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRefGoogle Scholar
  37. Fenton AA, Lytton WW, Barry JM, Lenck-Santini PP, Zinyuk LE, Kubík S, Bureš J, Poucet B, Muller RU, Olypher AV (2010) Attention-like modulation of hippocampus place cell discharge. J Neurosci 30:4613–4625PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fernandes MA, Moscovitch M (2000) Divided attention and memory: evidence of substantial interference effects at retrieval and encoding. J Exp Psychol Gen 129:155–176PubMedCrossRefGoogle Scholar
  39. Fernandes MA, Moscovitch M, Ziegler M, Grady C (2005) Brain regions associated with successful and unsuccessful retrieval of verbal episodic memory as revealed by divided attention. Neuropsychologia 43:1115–1127PubMedCrossRefGoogle Scholar
  40. Fletcher PC, Stephenson CME, Carpenter TA, Donovan T, Bullmore ET (2003) Regional brain activations predicting subsequent memory success: an event-related fMRI study of the influence of encoding tasks. Cortex 39:1009–1026PubMedCrossRefGoogle Scholar
  41. Gardiner JM, Parkin AJ (1990) Attention and recollective experience in recognition. Mem Cognit 18:579–583PubMedCrossRefGoogle Scholar
  42. Giesbrecht B, Sy JL, Guerin SA (2013) Both memory and attention systems contribute to visual search for targets cued by implicitly learned context. Vision Res 85:80–89PubMedCrossRefGoogle Scholar
  43. Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat Rev Neurosci 14:350–363PubMedCrossRefGoogle Scholar
  44. Goldfarb EV, Chun MM, Phelps EA (2016) Memory-guided attention: independent contributions of the hippocampus and striatum. Neuron 89:317–324PubMedPubMedCentralCrossRefGoogle Scholar
  45. Graham KS, Barense MD, Lee ACH (2010) Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings. Neuropsychologia 48:831–853PubMedCrossRefGoogle Scholar
  46. Greene AJ, Gross WL, Elsinger CL, Rao SM (2007) Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learn Mem 14:548–553PubMedPubMedCentralCrossRefGoogle Scholar
  47. Guild EB, Cripps JM, Anderson ND, Al-Aidroos N (2014) Recollection can support hybrid visual memory search. Psychon Bull Rev 21:142–148PubMedCrossRefGoogle Scholar
  48. Hannula DE, Ranganath C (2009) The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron 63:592–599PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hannula DE, Tranel D, Cohen NJ (2006) The long and short of it: relational memory impairments in amnesia, even at short lags. J Neurosci 26:8352–8359PubMedCrossRefGoogle Scholar
  50. Hannula DE, Ryan JD, Tranel D, Cohen NJ (2007) Rapid onset relational memory effects are evident in eye movement behavior, but not in hippocampal amnesia. J Cogn Neurosci 19:1690–1705PubMedCrossRefGoogle Scholar
  51. Hannula DE, Althoff RR, Warren DE, Riggs L, Cohen NJ, Ryan JD (2010) Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Front Hum Neurosci 4:1–16, Article 166Google Scholar
  52. Hardt O, Nadel L (2009) Cognitive maps and attention. In: Srinivasan N (ed) Progress in brain research, vol 176. Elsevier, The Netherlands, pp 181–194Google Scholar
  53. Hashimoto R, Abe N, Ueno A, Fujii T, Takahashi S, Mori E (2012) Changing the criteria for old/new recognition judgments can modulate activity in the anterior hippocampus. Hippocampus 23:141–148CrossRefGoogle Scholar
  54. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715PubMedPubMedCentralCrossRefGoogle Scholar
  55. Henke K, Buck A, Weber B, Wieser GH (1997) Human hippocampus establishes associations in memory. Hippocampus 7:249–256PubMedCrossRefGoogle Scholar
  56. Henke K, Weber B, Kneifel S, Wieser HG, Buck A (1999) Human hippocampus associates information in memory. Proc Natl Acad Sci 96:5884–5889PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hindy NC, Ng FY, Turk-Browne NB (2016) Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nat Neurosci. doi: 10.1038/nn.4284 PubMedPubMedCentralGoogle Scholar
  58. Hollingworth A (2006) Visual memory for natural scenes: evidence from change detection and visual search. Vis Cogn 14:781–807CrossRefGoogle Scholar
  59. Hollingworth A (2009) Two forms of scene memory guide visual search: memory for scene context and memory for the binding of target object to scene location. Vis Cogn 17:273–291CrossRefGoogle Scholar
  60. Huang L, Pashler H (2007) Working memory and the guidance of visual attention: consonance-driven orienting. Psychon Bull Rev 14:148–153PubMedCrossRefGoogle Scholar
  61. Hulbert JC, Henson RN, Anderson MC (2016) Inducing amnesia through systemic suppression. Nat Commun 7(11003):1–9Google Scholar
  62. Hutchinson JB, Turk-Browne NB (2012) Memory-guided attention: control from multiple memory systems. Trends Cogn Sci 16:576–579PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hutchinson JB, Pak SS, Turk-Browne NB (2016) Biased competition during long-term memory formation. J Cogn Neurosci 28:187–197PubMedCrossRefGoogle Scholar
  64. Iidaka T, Anderson ND, Kapur S, Cabeza R, Craik FIM (2000) The effect of divided attention on encoding and retrieval in episodic memory revealed by positron emission tomography. J Cogn Neurosci 12:267–280PubMedCrossRefGoogle Scholar
  65. Jackson J, Redish AD (2007) Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks. Hippocampus 17:1209–1229PubMedCrossRefGoogle Scholar
  66. Jeneson A, Mauldin KN, Hopkins RO, Squire LR (2011) The role of the hippocampus in retaining relational information across short delays: the importance of memory load. Learn Mem 18:301–305PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL (2008) Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 100:129–139PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kasper RW, Grafton ST, Eckstein MP, Giesbrecht B (2015) Multimodal neuroimaging evidence linking memory and attention systems during visual search cued by context. Ann N Y Acad Sci 1339:176–189PubMedCrossRefGoogle Scholar
  69. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341PubMedCrossRefGoogle Scholar
  70. Kelemen E, Fenton AA (2010) Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol 8(e1000403):1–14Google Scholar
  71. Kensinger EA, Clarke RJ, Corkin S (2003) What neural correlates underlie successful encoding and retrieval? A functional magnetic resonance imaging study using a divided attention paradigm. J Neurosci 23:2407–2415PubMedGoogle Scholar
  72. Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295PubMedCrossRefGoogle Scholar
  73. Kidd, C., Piantadosi, S.T., Aslin, R.N. (2012). The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS One, 7, e36399. doi:  10.1371/journal.pone.0036399.
  74. Kidd C, Piantadosi ST, Aslin RN (2014) The Goldilocks effect in infant auditory attention. Child Dev 85:1795–1804PubMedPubMedCentralGoogle Scholar
  75. Kuhl BA, Rissman J, Chun MM, Wagner AD (2011) Fidelity of neural reactivation reveals competition between memories. Proc Natl Acad Sci 108:5903–5908PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430PubMedCrossRefGoogle Scholar
  77. Leber AB, Egeth HE (2006) It’s under control: top-down search strategies can override attentional capture. Psychon Bull Rev 13:132–138PubMedCrossRefGoogle Scholar
  78. Leber AB, Kawahara JI, Gabari Y (2009) Long-term abstract learning of attentional set. J Exp Psychol Hum Percept Perform 35:1385–1397PubMedPubMedCentralCrossRefGoogle Scholar
  79. Libby LA, Ekstrom AD, Ragland JD, Ranganath C (2012) Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci 32:6550–6560PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713PubMedCrossRefGoogle Scholar
  81. Manns JR, Squire LR (2001) Perceptual learning, awareness, and the hippocampus. Hippocampus 11:776–782PubMedCrossRefGoogle Scholar
  82. Maunsell JHR, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29:317–322PubMedCrossRefGoogle Scholar
  83. Meister MLR, Buffalo EA (2016) Getting directions from the hippocampus: the neural connection between looking and memory. Neurobiol Learn Mem. doi: 10.1016/j.nlm.2015.12.004
  84. Monaco JD, Rao G, Roth ED, Knierim JJ (2014) Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat Neurosci 17:725–731PubMedPubMedCentralCrossRefGoogle Scholar
  85. Moores E, Laiti L, Chelazzi L (2003) Associative knowledge controls deployment of visual selective attention. Nat Neurosci 6:182–189PubMedCrossRefGoogle Scholar
  86. Moray N (1959) Attention in dichotic listening: affective cues and the influence of instructions. Q J Exp Psychol 11:56–60CrossRefGoogle Scholar
  87. Morris CD, Bransford JD, Franks JJ (1977) Levels of processing versus transfer appropriate processing. J Verb Learn Verb Behav 16:519–533CrossRefGoogle Scholar
  88. Moscovitch M (2008) The hippocampus as a “stupid”, domain-specific module: implications for theories of recent and remote memory, and of imagination. Can J Exp Psychol 62:62–79PubMedCrossRefGoogle Scholar
  89. Moscovitch M, Cabeza R, Winocur G, Nadel L (2016) Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol 67:105–134PubMedPubMedCentralCrossRefGoogle Scholar
  90. Muzzio IA, Kentros C, Kandel E (2009a) What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. J Physiol 12:2837–2854CrossRefGoogle Scholar
  91. Muzzio IA, Levita L, Kulkarni J, Monaco J, Kentros C, Stead M, Abbott LF, Kandel ER (2009b) Attention enhances the retrieval and stability of visuospatial and olfactory representations in the dorsal hippocampus. PLoS Biol 7(e1000140):1–20Google Scholar
  92. Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 6:1–19, Article 24CrossRefGoogle Scholar
  93. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175PubMedCrossRefGoogle Scholar
  94. Olsen RK, Moses SN, Riggs L, Ryan JD (2012) The hippocampus supports multiple cognitive processes through relational binding and comparison. Front Hum Neurosci 6:1–13, Article 146CrossRefGoogle Scholar
  95. Otten LJ, Henson RNA, Rugg MD (2001) Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain 124:399–412PubMedCrossRefGoogle Scholar
  96. Parent MB, Baxter MG (2004) Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 11:9–20PubMedPubMedCentralCrossRefGoogle Scholar
  97. Park H, Quinlan J, Thornton E, Reder LM (2004) The effect of midazolam on visual search: implications for understanding amnesia. Proc Natl Acad Sci 101:17879–17883PubMedPubMedCentralCrossRefGoogle Scholar
  98. Posner MI, Rothbart MK (2014) Attention to learning of school subjects. Trends Neurosci Educ 3:14–17PubMedPubMedCentralCrossRefGoogle Scholar
  99. Preston AR, Gabrieli JDE (2008) Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cereb Cortex 18:2192–2207PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ranganath C (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20:1263–1290PubMedCrossRefGoogle Scholar
  101. Ranganath C, Blumenfeld RS (2005) Doubts about double dissociations between short- and long-term memory. Trends Cogn Sci 9:374–380PubMedCrossRefGoogle Scholar
  102. Ranganath C, Ritchey M (2012) Two cortical systems for memory-guided behavior. Nat Rev Neurosci 13:713–726PubMedCrossRefGoogle Scholar
  103. Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: the need for attention to perceive changes in scenes. Psychol Sci 8:368–373CrossRefGoogle Scholar
  104. Rosen ML, Stern CE, Somers DC (2014) Long-term memory guidance of visuospatial attention in a change-detection paradigm. Front Psychol 5, Article 266:1–8. doi: 10.3389/fpsyg.00266 CrossRefGoogle Scholar
  105. Rosen ML, Stern CE, Michalka SW, Devaney KJ, Somers DC (2015) Cognitive control network contributions to memory-guided visual attention. Cereb Cortex. doi: 10.1093/cercor/bhv028 PubMedCentralGoogle Scholar
  106. Rowland DC, Kentros CG (2008) Potential anatomical basis for attentional modulation of hippocampal neurons. Ann N Y Acad Sci 1129:213–224PubMedCrossRefGoogle Scholar
  107. Ryals AJ, Wang JX, Polnaszek KL, Voss JL (2015) Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus. doi: 10.1002/hipo.22425 PubMedPubMedCentralGoogle Scholar
  108. Ryan JD, Althoff RR, Whitlow S, Cohen NJ (2000) Amnesia is a deficit in relational memory. Psychol Sci 11:454–461PubMedCrossRefGoogle Scholar
  109. Schapiro AC, Turk-Browne NB (2015) Statistical learning. In: Toga AW (ed) Brain mapping: an encyclopedic reference. Academic Press: Elsevier, New York, NY, pp 501–506CrossRefGoogle Scholar
  110. Schapiro AC, Kustner LV, Turk-Browne NB (2012) Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr Biol 22:1622–1627PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schapiro AC, Gregory E, Landau B, McCloskey M, Turk-Browne NB (2014) The necessity of the medial temporal lobe for statistical learning. J Cogn Neurosci 26:1736–1747PubMedPubMedCentralCrossRefGoogle Scholar
  112. Schott BH, Wustenberg T, Wimber M, Fenker DB, Zierhut KC, Seidenbecher CI, Heinze HJ, Walter H, Düzel E, Richardson-Klavehn A (2013) The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans. Hum Brain Mapp 34:407–424PubMedCrossRefGoogle Scholar
  113. Seidl-Rathkopf K, Turk-Browne NB, Kastner S (2015) Automatic guidance of attention during real-world visual search. Atten Percept Psychophys 77:1881–1895PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sheldon S, Moscovitch M (2012) The nature and time-course of medial temporal lobe contributions to semantic retrieval: an fMRI study on verbal fluency. Hippocampus 22:1451–1466PubMedCrossRefGoogle Scholar
  115. Soto D, Humphreys GW, Rotshtein P (2007) Dissociating the neural mechanisms of memory-based guidance of visual selection. Proc Natl Acad Sci 104:17186–17191PubMedPubMedCentralCrossRefGoogle Scholar
  116. Soto D, Hodsoll J, Rotshtein P, Humphreys GW (2008) Automatic guidance of attention from working memory. Trends Cogn Sci 12:342–348PubMedCrossRefGoogle Scholar
  117. Soto D, Greene CM, Kiyonaga A, Rosenthal CR, Egner T (2012) A parieto-medial temporal pathway for the strategic control over working memory biases in human visual attention. J Neurosci 32:17563–17571PubMedCrossRefGoogle Scholar
  118. Sprague TC, Saproo S, Serences JT (2015) Visual attention mitigates information loss in small- and large-scale neural codes. Trends Cogn Sci 19:215–226PubMedPubMedCentralCrossRefGoogle Scholar
  119. Stokes MG, Atherton K, Patai EZ, Nobre AC (2012) Long-term memory prepares neural activity for perception. Proc Natl Acad Sci 109:E360–E367PubMedCrossRefGoogle Scholar
  120. Strange BA, Dolan RJ (2001) Adaptive anterior hippocampal responses to oddball stimuli. Hippocampus 11:690–698PubMedCrossRefGoogle Scholar
  121. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, Bruehl AB, Cohen LG, deCharms RC, Gassert R et al (2013) Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76:386–399PubMedPubMedCentralCrossRefGoogle Scholar
  122. Summerfield JJ, Lepsien J, Gitelman DR, Mesulam MM, Nobre AC (2006) Orienting attention based on long-term memory experience. Neuron 49:905–916PubMedCrossRefGoogle Scholar
  123. Suthana NA, Ekstrom A, Moshirvaziri S, Knowlton B, Bookheimer S (2011) Dissociations within human hippocampal subregions during encoding and retrieval of spatial information. Hippocampus 21:694–701PubMedCrossRefGoogle Scholar
  124. Suthana NA, Donix M, Wozny DR, Bazih A, Jones M, Heidemann RM, Trampel R, Ekstrom AD, Scharf M, Knowlton B, Turner R, Bookheimer SY (2015) High-resolution 7-tesla fMRI of human hippocampal subfields during associative learning. J Cogn Neurosci 27:1194–1206PubMedCrossRefGoogle Scholar
  125. Torralba A, Oliva A, Castelhano MS, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev 113:766–786PubMedCrossRefGoogle Scholar
  126. Turk-Browne NB, Jungé JA, Scholl BJ (2005) The automaticity of visual statistical learning. J Exp Psychol Gen 134:552–564PubMedCrossRefGoogle Scholar
  127. Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK (2009) Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J Cogn Neurosci 21:1934–1945PubMedPubMedCentralCrossRefGoogle Scholar
  128. Turk-Browne NB, Scholl BJ, Johnson MK, Chun MM (2010) Implicit perceptual anticipation triggered by statistical learning. J Neurosci 30:11177–11187PubMedPubMedCentralCrossRefGoogle Scholar
  129. Turk-Browne NB, Golomb JD, Chun MM (2013) Complementary attentional components of successful memory encoding. Neuroimage 66:553–562PubMedCrossRefGoogle Scholar
  130. Uncapher MR, Rugg MD (2005) Effects of divided attention on fMRI correlates of memory encoding. J Cogn Neurosci 17:1923–1935PubMedCrossRefGoogle Scholar
  131. Uncapher MR, Rugg MD (2006) Episodic encoding is more than the sum of its parts: an fMRI investigation of multifeatural contextual encoding. Neuron 52:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  132. Uncapher MR, Rugg MD (2008) Fractionation of the component processes underlying successful episodic encoding: a combined fMRI and divided-attention study. J Cogn Neurosci 20:240–254PubMedCrossRefGoogle Scholar
  133. Uncapher MR, Rugg MD (2009) Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information. J Neurosci 29:8270–8279PubMedPubMedCentralCrossRefGoogle Scholar
  134. Uncapher MR, Hutchinson JB, Wagner AD (2011) Dissociable effects of top-down and bottom-up attention during episodic encoding. J Neurosci 31:12613–12628PubMedPubMedCentralCrossRefGoogle Scholar
  135. Vilberg KL, Rugg MD (2007) Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia 45:2216–2225PubMedPubMedCentralCrossRefGoogle Scholar
  136. Vilberg KL, Rugg MD (2012) The neural correlates of recollection: transient versus sustained fMRI effects. J Neurosci 32:15679–15687PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vilberg KL, Rugg MD (2014) Temporal dissociations within the core recollection network. Cogn Neurosci 5:77–84PubMedCrossRefGoogle Scholar
  138. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342PubMedPubMedCentralCrossRefGoogle Scholar
  139. Voss JL, Gonsalves BD, Federmeier KD, Tranel D, Cohen NJ (2010) Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nat Neurosci 14:115–120PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL (1998) Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281:1188–1191PubMedCrossRefGoogle Scholar
  141. Wais PE, Gazzaley A (2011) The impact of auditory distraction on retrieval of visual memories. Psychon Bull Rev 18:1090–1097PubMedCrossRefGoogle Scholar
  142. Wais PE, Rubens MT, Boccanfuso J, Gazzaley A (2010) Neural mechanisms underlying the impact of visual distraction on retrieval of long-term memory. J Neurosci 29:8541–8550CrossRefGoogle Scholar
  143. West Channon V, Hopfinger JB (2008) Memory’s grip on attention: the influence of item memory on the allocation of attention. Vis Cogn 16:325–340CrossRefGoogle Scholar
  144. Wimber M, Alink A, Charest I, Kriegeskorte N, Anderson MC (2015) Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nat Neurosci 18:582–589PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wolfe JM (2012) Saved by a log: how do humans perform hybrid visual and memory search? Psychol Sci 23:698–703PubMedPubMedCentralCrossRefGoogle Scholar
  146. Wolosin SM, Zeithamova D, Preston AR (2013) Distributed hippocampal patterns that discriminate reward context are associated with enhanced associative binding. J Exp Psychol Gen 142:1264–1276PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yamaguchi S, Hale LA, D’Esposito M, Knight RT (2004) Rapid prefrontal-hippocampal habituation to novel events. J Neurosci 24:5356–5363PubMedCrossRefGoogle Scholar
  148. Yi DJ, Chun MM (2005) Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. J Neurosci 25:3593–3600PubMedCrossRefGoogle Scholar
  149. Yonelinas AP (2002) The nature of recollection and familiarity: a review of 30 years of research. J Mem Lang 46:441–517CrossRefGoogle Scholar
  150. Yonelinas AP (2013) The hippocampus supports high-resolution binding the service of perception, working memory and long-term memory. Behav Brain Res 252:34–44CrossRefGoogle Scholar
  151. Yonelinas AP, Aly M, Wang WC, Koen JD (2010) Recollection and familiarity: examining controversial assumptions and new directions. Hippocampus 20:1178–1194PubMedPubMedCentralCrossRefGoogle Scholar
  152. Yu RQ, Zhao J (2015) The persistence of the attentional bias to regularities in a changing environment. Atten Percept Psychophys. doi: 10.3758/s13414-015-0930-5 Google Scholar
  153. Zeineh MM, Engel SA, Thompson PM, Bookehimer SY (2003) Dynamics of the hippocampus during the encoding and retrieval of face-name pairs. Science 299:577–580PubMedCrossRefGoogle Scholar
  154. Zhao J, Al-Aidroos N, Turk-Browne NB (2013) Attention is spontaneously biased toward regularities. Psychol Sci 24:667–677PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Princeton Neuroscience InstitutePrinceton UniversityPrincetonUSA
  2. 2.Department of PsychologyPrinceton UniversityPrincetonUSA

Personalised recommendations