Skip to main content

Schumpeterian Macroeconomic Production Function for Open Economies

  • Chapter
  • First Online:
Book cover Macro Innovation Dynamics and the Golden Age
  • 460 Accesses

Abstract

The macroeconomic production function is a traditional key element of modern macroeconomics, as is the more recent knowledge production function which explains knowledge/patents by certain input factors such as research, foreign direct investment, or international technology spillovers. This study is a major contribution to innovation, trade, FDI, and growth analysis, namely in the form of a combination of an empirically relevant knowledge production function for open economies—with both trade and inward FDI as well as outward foreign direct investment plus research input—with a macro production function. Plugging the open economy knowledge production function into a standard macroeconomic production function yields important new insights for many fields: the estimation of the production potential in an open economy, growth decomposition analysis in the context of economic globalization, and the demand for labor as well as long-run international output interdependency of big countries, and this includes a view at the asymmetric case of a simple two country world in which one country is at full employment while the other is facing underutilized capacities. Finally, there are crucial implications for the analysis of broad regional integration schemes such as TTIP or TPP and a more realistic and comprehensive empirical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdih Y, Joutz F (2005) Relating the knowledge production function to total factor productivity: an endogenous growth puzzle. IMF Working Paper, WP/05/74

    Google Scholar 

  • Aghion P, Howitt P (1998) Endogenous growth theory. MIT Press, Cambridge, MA

    Google Scholar 

  • Asian Development Bank (2015) Asian economic integration report: how can special economic zones catalyze economic development? Asian Development Bank, Manila

    Google Scholar 

  • Bönte W (2001) Wie produktiv sind Investitionen in industrielle Forschung und Entwicklung? (How productive are investments into industrial R&D). Wirtsch Stat 2001(4):312–320

    Google Scholar 

  • Coe DT, Helpman E (1995) International R&D spillovers. Eur Econ Rev 39:859–887

    Article  Google Scholar 

  • Cheung K, Lin P (2004) Spillover effects of FDI on innovation in China: evidence from the provincial data. China Econ Rev 15:25–44

    Article  Google Scholar 

  • Dachs B (2016) Techno-Globalisierung als Motor des Aufholprozesses im Österreichischen Innovationssystem. Hans-Böckler-Stiftung project “EU-Strukturwandel, Leitmärkte und Techno-Globalisierung”, EIIW Discussion Paper 222

    Google Scholar 

  • Dachs B et al (2014) The internationalisation of business R&D, new perspectives on the modern corporation. Edward Elgar, Cheltenham

    Google Scholar 

  • Dunning J, Lundan SM (2008) Multinational enterprises and the global economy, 2nd edn. Edward Elgar, Cheltenham

    Google Scholar 

  • Francois J et al (2013) Reducing transatlantic barriers to trade and investment. London CEPR (for the European Commission)

    Google Scholar 

  • Graham EM, Krugman P (1995) Foreign direct investment in the United States, 3rd edn. Peterson Institute Press: All Books, Peterson Institute for International Economics, Washington, DC

    Google Scholar 

  • Griliches Z (1979) Issues in assessing the contribution of research and development to productivity growth. Bell J Econ 10:92–116

    Article  Google Scholar 

  • Jones CI (1995) R & D-based models of economic growth. J Polit Econ 103(4):759–784

    Article  Google Scholar 

  • Jungmittag A (2004) Innovations, technological specialization and economic growth in the EU. Int Econ Econ Policy 1:247–273

    Article  Google Scholar 

  • Jungmittag A (2016) Techno-Globalisierung. Hans-Böckler-Stiftung project “EU-Strukturwandel, Leitmärkte und Techno-Globalisierung”, EIIW Discussion Paper 221

    Google Scholar 

  • Jungmittag A, Welfens P J J (2016) TTIP: beyond trade—the dynamics of foreign direct investment, patents and output growth. EIIW Working Paper 212, paper presented at the IMF, June 28, Washington, DC (download from www.eiiw.eu)

  • Keller W (2000) Geographic localization of international technology diffusion. NBER Working Paper No 7509, National Bureau of Economic Research

    Google Scholar 

  • Lachenmaier S, Wößmann L (2006) Does innovation cause exports? Evidence from exogenous innovation impulses and obstacles using German micro data. Oxford economic Papers No 58, pp 317–350

    Google Scholar 

  • Machlup F (1979) Stocks and flows of knowledge. Kyklos 32(1–2):400–411

    Article  Google Scholar 

  • Melitz MJ (2003) The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 71:1695–1725

    Article  Google Scholar 

  • Narula R, Zanfei A (2005) Globalisation of innovation: the role of multinational enterprises. In: Fagerberg J, Movery DC, Nelson RR (eds) The Oxford handbook of innovation. Oxford University Press, Oxford, pp 68–115

    Google Scholar 

  • Perret JK (2014) Knowledge as a driver of regional growth in the Russian Federation. Springer, Heidelberg

    Book  Google Scholar 

  • Piketty T (2014) Capital in the 21st century. Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Romer PM (1990) Endogenous technological change. J Polit Econ 98(5) (October), pt. II:71–102

    Article  Google Scholar 

  • UNCTAD (1996) World investment report 2014: investing in the SDGs: an action plan. United Nations, New York, Geneva

    Google Scholar 

  • UNCTAD (2005) World investment report 2005: transnational corporations and the internationalization of R&D, Geneva

    Google Scholar 

  • Veugelers R (2005), Internationalisation of R&D: trends, issues and implications for S&T policies, Background report for the OECD forum on the internationalization of R&D, Brussels

    Google Scholar 

  • Welfens PJJ (2011) Innovations in macroeconomics, 3rd revised and enlarged edition. Springer, Heidelberg

    Book  Google Scholar 

  • Welfens PJJ (2014) Information & communication technology and true real GDP: economic analysis and findings for selected countries. Int Econ Econ Policy 11(1):5–27

    Article  Google Scholar 

  • Welfens PJJ (2015) Innovation, inequality and a golden rule for growth in an economy with Cobb-Douglas function and an R&D sector. Int Econ Econ Policy 12(4):469–496

    Article  Google Scholar 

  • World Bank (2016) Global economic prospects: spillovers amid weak growth, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

5.1.1 A.1 Optimal Choice of the Size of the R&D Sector

In the above equation (V) in logs, one can replace zL′ by zL since zY = zLy (recall that zY is the output of the R&D sector), and zY/y = zL′ and zY/y = zL so that zL = zL′ and hence ln(zL′) can be replaced by ln(zL). The research share z″ in output that maximizes Y thus can be derived (or one maximizes y with respect to z″). Taking the derivative dlnY/dz″ and setting it equal to zero gives the necessary condition (while assuming: V′ + V″ < 1)

$$ d \ln Y/dz^{{\prime\prime} }=\left(-1/\left(1-z^{{\prime\prime}}\right)\right)\Big(1/\left(1-\left({V}^{\prime }+{V}^{{\prime\prime}}\right)\left(1-\beta \right)\right)+\left(1-\beta \right){V}^{{\prime\prime} }\ \left(1/z^{{\prime\prime}}\right)/\left(1-\left({V}^{\prime }+{V}^{{\prime\prime}}\right)\left(1-\beta \right)\right)=0 $$
(5.38)
$$ -1/\left(1-{\mathrm{z}}^{{\prime\prime}}\right)+\left(1-\mathrm{\ss}\right){\mathrm{V}}^{{\prime\prime} }/{\mathrm{z}}^{{\prime\prime} }=0 $$
(5.39)
$$ z^{{\prime\prime} }/\left(1-z^{{\prime\prime}}\right)=\left(1-\beta \right){V}^{{\prime\prime} } $$
(5.40)
$$ 1/z^{{\prime\prime} }=1+1/\left(\left(1-\beta \right){v}^{{\prime\prime}}\right) $$
(5.41)
$$ z^{{\prime\prime} }=1/\Big(1+\left(1/\left(\left(1-\beta \right){v}^{{\prime\prime}}\right)\right) $$
(5.42)

Assume 1/((1 − β)v″) is close to zero.

$$ \ln z^{{\prime\prime}}\approx 1/\left(\left(1-\beta \right){v}^{{\prime\prime}}\right) $$
(5.43)

Note: dlnz″/ < 0; dlnz″/dv″ > 0.

For a maximum, the second derivative should be negative and it is given by the expression

$$ {d}^2 \ln Y/{dz{\prime\prime}}^2=\left[\left(-1/{\left(1-z{\prime\prime} \right)}^2\right)\left(1/\left(1-\left({V}^{\prime }+{V}^{{\prime\prime}}\right)\left(1-\beta \right)\right)\right)\right]\hbox{--} \left\{\left(1-\beta \right){V}^{{\prime\prime}}\left(1/z^{{\prime\prime} }{}^2\right)/\left(1-\left({V}^{\prime }+{V}^{{\prime\prime}}\right)\left(1-\beta \right)\right)\right\}<0 $$
(5.44)

This equation is fulfilled if {…} > […].

$$ \left\{\dots \right\}/\left[\dots \right]>1 $$
(5.45)
$$ \Big(1/{\left(1-z{\prime\prime} \right)}^2/\left(\left(\left(1-\beta \right){v}^{{\prime\prime}}\right)/z^{{\prime\prime} }{}^2\right)<1 $$
(5.46)
$$ 1/\left(\left(\left(1-2z^{{\prime\prime} }+z^{{\prime\prime} }{}^2\right)/z^{{\prime\prime} }{}^2\right)\left(1-\beta \right){v}^{{\prime\prime}}\right)<1 $$
(5.47)
$$ 1/\left(1/z^{{\prime\prime} }{}^2-2/z^{{\prime\prime} }+1\right)>\left(1-\beta \right){v}^{{\prime\prime} } $$
(5.48)
$$ -1/z{{\prime\prime}}^2+2/{z}^{\prime }>-\beta + \ln {v}^{{\prime\prime} } $$
(5.49)
$$ f\left({z}^{\prime}\right)>-\beta + \ln {v}^{{\prime\prime} } $$
(5.50)

An alternative approach could be to consider an endogenous growth model based on the Schumpeterian macroeconomic production function and then one considers the steady state situation and maximizes steady state per capita consumption through optimal choice of z″. Governments eager to obtain the maximum golden rule consumption per capita will have to consider the profit maximization condition of the R&D sector and on this basis should allocate an adequate subsidy rate to the R&D sector. An extended approach would then additionally include the government budget constraint G + f′Y = τY if one assumes that there is no government debt (f′ is the subsidy ratio that should reflect the difference between the social rate of return on innovation and the private rate of return on innovation and G is government consumption—with G/Y:= γ to be considered the relevant exogenous variable). This then leads to an optimum tax analysis where τ = f′ + γ.

5.1.2 A.2 Schumpeterian CES Function

The knowledge production function is given by

$$ A={\left(xY*/Y\right)}^H{j}^{V^{\prime }}{y}^{H+{V}^{\prime }+{V}^{{\prime\prime} }}{\left({z}^{\prime }{L}^{\prime}\right)}^{V^{{\prime\prime} }}{\left(\alpha *\beta /r\right)}^V{\left(\alpha \beta */r*\right)}^{V*} $$
(5.51)

The CES production function—compared to the Cobb–Douglas function, it is better suitable for analyzing income distribution issues—is given by

$$ Y=\lambda {\left[\left(1-\varOmega \right){(AL)}^{-{v}^{{\prime\prime} }}+\varOmega {K}^{-{v}^{{\prime\prime} }}\right]}^{-1/{v}^{{\prime\prime} }} $$
(5.52)

(Ω > 0; 0 < Ω < 1; v″ ≥ 1; v″ ≠ 0, elasticity of substitution σ″ = 1/(1+v″); λ > 0)

Inserting (i) in (ii) gives:

$$ \begin{array}{ll}\hfill & Y\\ {}& =\lambda {\left[\left(1-\varOmega \right){\left({\left(xY*/Y\right)}^H{j}^{V^{\prime }}{y}^{H+{V}^{\prime }+{V}^{{\prime\prime} }}{\left({z}^{\prime }{L}^{\prime}\right)}^{V^{{\prime\prime} }}{\left(\alpha *\beta /r\right)}^V{\left(\alpha \beta */r*\right)}^{V*}L\right)}^{-{v}^{{\prime\prime} }}+\varOmega {K}^{-{v}^{{\prime\prime} }}\right]}^{-1/{v}^{{\prime\prime} }}\hfill \end{array} $$
(5.53)
$$ \begin{array}{ll}\hfill & {Y}^{-{v}^{{\prime\prime} }}\\ {}& ={\lambda}^{-{v}^{{\prime\prime} }}\left[\left(1-\varOmega \right){\left({\left(xY*/Y\right)}^H{j}^{V^{\prime }}{y}^{H+{V}^{\prime }+{V}^{{\prime\prime} }}{\left({z}^{\prime }{L}^{\prime}\right)}^{V^{{\prime\prime} }}{\left(\alpha *\beta /r\right)}^V{\left(\alpha \beta */r*\right)}^{V*}L\right)}^{-{v}^{{\prime\prime} }}+\varOmega {K}^{-{v}^{{\prime\prime} }}\right]\hfill \end{array} $$
(5.54)

We can solve in a meaningful way for Y if one assumes that v″ = V′+V″:

$$ \begin{array}{ll}\hfill & {Y}^{-2{v}^{{\prime\prime} }}\\ {}& ={\lambda}^{-{v}^{{\prime\prime} }}\left[\left(1-\varOmega \right){\left({\left(xY*\right)}^H{j}^{V^{\prime }}{\left({z}^{\prime }{L}^{\prime}\right)}^{V^{{\prime\prime} }}{\left(\alpha *\beta /r\right)}^V{\left(\alpha \beta */r*\right)}^{V*}{L}^{1\_H-{V}^{\prime }-{V}^{{\prime\prime} }}\right)}^{-{v}^{{\prime\prime} }}+\varOmega {\left(K/Y\right)}^{-{v}^{{\prime\prime} }}\right]\hfill \end{array} $$
(5.55)
$$ \begin{array}{ll}\hfill & Y\\ {}& ={\lambda}^{0.5}{\left[\left(1-\varOmega \right){\left({\left(xY*\right)}^H{j}^{V^{\prime }}{\left({z}^{\prime }{L}^{\prime}\right)}^{V^{{\prime\prime} }}{\left(\alpha *\beta /r\right)}^V{\left(\alpha \beta */r*\right)}^{V*}{L}^{1-H-{V}^{\prime }-{V}^{{\prime\prime} }}\right)}^{-{v}^{{\prime\prime} }}+\varOmega {\left(K/Y\right)}^{-{v}^{{\prime\prime} }}\right]}^{-1/2{v}^{{\prime\prime} }}\hfill \end{array} $$
(5.56)

Dividing (iv) by ΩK−v″ gives:

$$ \begin{array}{ll}\hfill & \left(Y/\left(\varOmega K\right)\right)\\ {}& ={\lambda}^{-{v}^{{\prime\prime} }}\left[\left(1-\varOmega \right){\left({\left(xY*/Y\right)}^H{j}^{V^{\prime }}{y}^{H+{V}^{\prime }+{V}^{{\prime\prime} }}{\left({z}^{\prime }{L}^{\prime}\right)}^{V^{{\prime\prime} }}{\left(\alpha *\beta /r\right)}^V{\left(\alpha \beta */r*\right)}^{V*}L\right)}^{-{v}^{{\prime\prime} }}/{\left(\varOmega K/Y\right)}^{\hbox{--} {v}^{{\prime\prime} }}+1\right]\hfill \end{array} $$
(5.57)
$$ \mathrm{Define}\kern0.5em {z}^{\prime }:{=}^{``}\left[\left(1-\varOmega \right){\left({\left(xY*/Y\right)}^H{j}^{V^{\prime }}{y}^{H+{V}^{\prime }+{V}^{{\prime\prime} }}{\left({z}^{\prime }{L}^{\prime}\right)}^{V^{{\prime\prime} }}{\left(\alpha *\beta /r\right)}^V{\left(\alpha \beta */r*\right)}^{V*}L\right)}^{-{v}^{{\prime\prime} }}/{\left(\varOmega K/Y\right)}^{\hbox{--} {v}^{{\prime\prime} }}+1\right] $$
(5.58)

Hence, taking logs and using the approximation ln(1 + Z ) ≈ Z —for Z′ close to zero—we can use the approximation:

$$ -3{v}^{{\prime\prime} } \ln (Y)- \ln \Big(\left(\varOmega \right)-{v}^{{\prime\prime} } \ln (K)=-{v}^{{\prime\prime} } \ln \left(\lambda \right)+{Z}^{\prime } $$
(5.59)
$$ \ln (Y)=\left\{- \ln \right(\left(\varOmega \right)-{v}^{{\prime\prime} } \ln (K)+{v}^{{\prime\prime} } \ln \left(\lambda \right)-{Z}^{\prime}\Big\}/3{v}^{{\prime\prime} } $$
(5.60)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Welfens, P.J.J. (2017). Schumpeterian Macroeconomic Production Function for Open Economies. In: Macro Innovation Dynamics and the Golden Age. Springer, Cham. https://doi.org/10.1007/978-3-319-50367-7_5

Download citation

Publish with us

Policies and ethics