Abstract
This paper describes an algorithm for solving multidimensional multiextremal optimization problems. This algorithm uses Peano-type space-filling curves for dimension reduction. It has been used for solving problems at GENeralization-based contest in global OPTimization (GENOPT). Computational experiments are carried out on 1800 multidimensional problems.
Keywords
- Global optimization
- Multiextremal functions
- Space-filling curves
- Mixed global-local algorithm
- GENOPT
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Hill, J.D.: A search technique for multimodal surfaces. IEEE Trans. Syst. Sci. Cybern. 5(1), 2–8 (1969)
Shekel, J.: Test functions for multimodal search technique. In: Proceedings of the 5th Princeton Conference on Information Science Systems, pp. 354–359. Princeton University Press, Princeton (1971)
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)
Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)
Grishagin, V.A.: Operation characteristics of some global optimization algorithms. Probl. Stoch. Search 7, 198–206 (1978). (in Russian)
Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)
Kvasov, D., Sergeyev, Y.D.: Multidimensional global optimization algorithm based on adaptive diagonal curves. Comput. Math. Math. Phys. 43(1), 40–56 (2003)
Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-filling Curves. Springer, New York (2013)
Lera, D., Sergeyev, Y.D.: Lipschitz and holder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)
Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theory Appl. 80(3), 513–536 (1994)
Sergeyev, Y.D., Grishagin, V.A.: Sequential and parallel global optimization algorithms. Optim. Methods Softw. 3, 111–124 (1994)
Gergel, V.P.: A method of using derivatives in the minimization of multiextremum functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)
Gergel, V.P.: A global optimization algorithm for multivariate functions with lipschitzian first derivatives. J. Glob. Optim. 10(3), 257–281 (1997)
Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical algorithms for solving problems of global optimization. J. Glob. Optim. 10(2), 185–206 (1997)
Gergel, V.P., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives. Comput. Math. Appl. 37(4–5), 163–179 (1999)
Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)
Strongin, R.G., Sergeyev, Y.D.: Global optimization: fractal approach and non-redundant parallelism. J. Glob. Optim. 27(1), 25–50 (2003)
Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making on cluster systems. Future Gener. Comput. Syst. 21(5), 673–678 (2005)
Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression parameters optimization using parallel global search algorithm. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39958-9_14
Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for parallel global search algorithms. In: Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization - OPT-i 2014, pp. 2111–2124 (2014)
Gergel, V., Grishagin, V., Israfilov, R.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51(1), 865–874 (2015)
Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Global Optim. 66, 35–51 (2016)
Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Global Optim. 66, 3–20 (2016)
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)
Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Global Optim. 59(2–3), 545–567 (2015)
Hooke, R., Jeeves, T.A.: “Direct search” solution of numerical and statistical problems. J. ACM. 8(2), 212–229 (1961)
Wilde, D.J.: Optimum Seeking Methods. Prentice-Hall, Engelwood Cliffs (1964)
Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)
Acknowledgements
This study was supported by the Russian Science Foundation, project No 15-11-30022 “Global optimization, supercomputing computations, and applications”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Barkalov, K., Sysoyev, A., Lebedev, I., Sovrasov, V. (2016). Solving GENOPT Problems with the Use of ExaMin Solver. In: Festa, P., Sellmann, M., Vanschoren, J. (eds) Learning and Intelligent Optimization. LION 2016. Lecture Notes in Computer Science(), vol 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-50349-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50348-6
Online ISBN: 978-3-319-50349-3
eBook Packages: Computer ScienceComputer Science (R0)