Skip to main content

Solving GENOPT Problems with the Use of ExaMin Solver

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10079)

Abstract

This paper describes an algorithm for solving multidimensional multiextremal optimization problems. This algorithm uses Peano-type space-filling curves for dimension reduction. It has been used for solving problems at GENeralization-based contest in global OPTimization (GENOPT). Computational experiments are carried out on 1800 multidimensional problems.

Keywords

  • Global optimization
  • Multiextremal functions
  • Space-filling curves
  • Mixed global-local algorithm
  • GENOPT

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hill, J.D.: A search technique for multimodal surfaces. IEEE Trans. Syst. Sci. Cybern. 5(1), 2–8 (1969)

    CrossRef  Google Scholar 

  2. Shekel, J.: Test functions for multimodal search technique. In: Proceedings of the 5th Princeton Conference on Information Science Systems, pp. 354–359. Princeton University Press, Princeton (1971)

    Google Scholar 

  3. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    CrossRef  MATH  Google Scholar 

  4. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Grishagin, V.A.: Operation characteristics of some global optimization algorithms. Probl. Stoch. Search 7, 198–206 (1978). (in Russian)

    MATH  Google Scholar 

  6. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Kvasov, D., Sergeyev, Y.D.: Multidimensional global optimization algorithm based on adaptive diagonal curves. Comput. Math. Math. Phys. 43(1), 40–56 (2003)

    MathSciNet  Google Scholar 

  8. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-filling Curves. Springer, New York (2013)

    CrossRef  MATH  Google Scholar 

  9. Lera, D., Sergeyev, Y.D.: Lipschitz and holder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theory Appl. 80(3), 513–536 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Sergeyev, Y.D., Grishagin, V.A.: Sequential and parallel global optimization algorithms. Optim. Methods Softw. 3, 111–124 (1994)

    CrossRef  MATH  Google Scholar 

  12. Gergel, V.P.: A method of using derivatives in the minimization of multiextremum functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Gergel, V.P.: A global optimization algorithm for multivariate functions with lipschitzian first derivatives. J. Glob. Optim. 10(3), 257–281 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical algorithms for solving problems of global optimization. J. Glob. Optim. 10(2), 185–206 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Gergel, V.P., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives. Comput. Math. Appl. 37(4–5), 163–179 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Strongin, R.G., Sergeyev, Y.D.: Global optimization: fractal approach and non-redundant parallelism. J. Glob. Optim. 27(1), 25–50 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making on cluster systems. Future Gener. Comput. Syst. 21(5), 673–678 (2005)

    CrossRef  Google Scholar 

  19. Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression parameters optimization using parallel global search algorithm. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39958-9_14

    CrossRef  Google Scholar 

  20. Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for parallel global search algorithms. In: Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization - OPT-i 2014, pp. 2111–2124 (2014)

    Google Scholar 

  21. Gergel, V., Grishagin, V., Israfilov, R.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51(1), 865–874 (2015)

    CrossRef  Google Scholar 

  22. Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Global Optim. 66, 35–51 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Global Optim. 66, 3–20 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Global Optim. 59(2–3), 545–567 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Hooke, R., Jeeves, T.A.: “Direct search” solution of numerical and statistical problems. J. ACM. 8(2), 212–229 (1961)

    CrossRef  MATH  Google Scholar 

  27. Wilde, D.J.: Optimum Seeking Methods. Prentice-Hall, Engelwood Cliffs (1964)

    MATH  Google Scholar 

  28. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  29. http://www.top500.org/system/178472

Download references

Acknowledgements

This study was supported by the Russian Science Foundation, project No 15-11-30022 “Global optimization, supercomputing computations, and applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Barkalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Barkalov, K., Sysoyev, A., Lebedev, I., Sovrasov, V. (2016). Solving GENOPT Problems with the Use of ExaMin Solver. In: Festa, P., Sellmann, M., Vanschoren, J. (eds) Learning and Intelligent Optimization. LION 2016. Lecture Notes in Computer Science(), vol 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50349-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50348-6

  • Online ISBN: 978-3-319-50349-3

  • eBook Packages: Computer ScienceComputer Science (R0)