Skip to main content

Learning a Stopping Criterion for Local Search

  • Conference paper
  • First Online:
  • 753 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10079))

Abstract

Local search is a very effective technique to tackle combinatorial problems in multiple areas ranging from telecommunications to transportations, and VLSI circuit design. A local search algorithm typically explores the space of solutions until a given stopping criterion is met. Ideally, the algorithm is executed until a target solution is reached (e.g., optimal or near-optimal). However, in many real-world problems such a target is unknown. In this work, our objective is to study the application of machine learning techniques to carefully craft a stopping criterion. More precisely, we exploit instance features to predict the expected quality of the solution for a given algorithm to solve a given problem instance, we then run the local search algorithm until the expected quality is reached. Our experiments indicate that the suggested method is able to reduce the average runtime up to 80% for real-world instances and up to 97% for randomly generated instances with a minor impact in the quality of the solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    portcgen is available at http://dimacs.rutgers.edu/Challenges/TSP/codes.tar.

References

  1. Davey, R., Grossman, D., Rasztovits-Wiech, M., Payne, D., Nesset, D., Kelly, A., Rafel, A., Appathurai, S., Yang, S.H.: Long-reach passive optical networks. J. Lightwave Technol. 27(3), 273–291 (2009)

    Article  Google Scholar 

  2. Arbelaez, A., Mehta, D., O’Sullivan, B., Quesada, L.: Constraint-based local search for the distance- and capacity-bounded network design problem. In: ICTAI 2014, Limassol, Cyprus, November 10–12, 2014, pp. 178–185 (2014)

    Google Scholar 

  3. Arbelaez, A., Mehta, D., O’Sullivan, B., Quesada, L.: Constraint-based local search for edge disjoint rooted distance-constrainted minimum spanning tree problem. In: CPAIOR 2015, pp. 31–46 (2015)

    Google Scholar 

  4. Arbelaez, A., Mehta, D., O’Sullivan, B.: Constraint-based local search for finding node-disjoint bounded-paths in optical access networks. In: CP 2015, pp. 499–507 (2015)

    Google Scholar 

  5. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Croes, G.A.: A method for solving traveling salesman problems. Oper. Res. 6, 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  7. Hoos, H., Stütze, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, New York (2005)

    Google Scholar 

  8. Larochelle, H., Bengio, Y.: Classification using Discriminative Restricted Boltzmann Machines. In: ICML 2008, Helsinki, Finland, ACM 536–543., June 2008

    Google Scholar 

  9. Al-Shahib, A., Breitling, R., Gilbert, D.R.: Predicting protein function by machine learning on amino acid sequences - a critical evaluation. BMC Genomics 8(2), 78 (2007)

    Article  Google Scholar 

  10. Gelly, S., Silver, D.: Combining Online and Offline Knowledge in UCT. In: ICML 2007. vol. 227, pp. 273–280. ACM, Corvalis, Oregon, USA, June 2007

    Google Scholar 

  11. Rish, I., Brodie, M., Ma, S., et al.: Adaptive diagnosis in distributed dystems. IEEE Trans. Neural Netw. 16, 1088–1109 (2005)

    Article  Google Scholar 

  12. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3), 48–60 (2014)

    Google Scholar 

  13. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

    MATH  Google Scholar 

  14. Battiti, R., Tecchiolli, G.: The reactive tabu search. INFORMS J. Comput. 6(2), 126–140 (1994)

    Article  MATH  Google Scholar 

  15. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kahavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI 1995, pp. 1137–1145 (1995)

    Google Scholar 

  17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

    Article  Google Scholar 

  18. Ribeiro, C.C., Rosseti, I., Souza, R.C.: Effective probabilistic stopping rules for randomized metaheuristics: GRASP Implementations. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 146–160. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_11

    Chapter  Google Scholar 

  19. Bontempi, G.: An optimal stopping strategy for online calibration in local search. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 106–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_8

    Chapter  Google Scholar 

  20. Pardalos, P.M., Romeijn, H.E.: Handbook of Global Optimization. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  21. Boender, C.G.E., Kan, A.H.G.R.: Bayesian stopping rules for multistart global optimization methods. Math. Program. 37(1), 59–80 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Orsenigo, C., Vercellis, C.: Bayesian stopping rules for greedy randomized procedures. J. Global Optim. 36(3), 365–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dorea, C.C.Y.: Stopping rules for a random optimization method. SIAM J. Control Optim. 4, 841–850 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hart, W.E.: Sequential stopping rules for random optimization methods with applications to multistart local search. SIAM J. Optim. 9(1), 270–290 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by DISCUS (FP7 Grant Agreement 318137) and Science Foundation Ireland (SFI) Grant No. 10/CE/I1853. The Insight Centre for Data Analytics is also supported by SFI under Grant Number SFI/12/RC/2289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Arbelaez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Arbelaez, A., O’Sullivan, B. (2016). Learning a Stopping Criterion for Local Search. In: Festa, P., Sellmann, M., Vanschoren, J. (eds) Learning and Intelligent Optimization. LION 2016. Lecture Notes in Computer Science(), vol 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50349-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50348-6

  • Online ISBN: 978-3-319-50349-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics