Modified Health Effects of Non-ionizing Electromagnetic Radiation Combined with Other Agents Reported in the Biomedical Literature

Chapter

Abstract

Ionizing and non-ionizing electromagnetic field (EMF) radiation, either stand-alone or in combination with other agents, exert health effects on biological systems. The present chapter examines the scope of non-ionizing EMF radiation combined effects; i.e., identifies effects on biological systems from combined exposure to non-ionizing electromagnetic fields/radiation and at least one other agent. Only articles in which the presence of non-ionizing EMF radiation had some effect (beneficial or adverse) on the biological system were selected. A comprehensive and novel query was developed using an iterative hybrid approach, whereby articles related by common text and by citation linkages were retrieved. This retrieved literature was: (1) clustered algorithmically into 32 biomedical sub-themes (assigned by the authors); (2) grouped through factor analysis into 32 factors; and (3) subsequently grouped manually (by the authors) into an effects-based taxonomy. The common principles within each thematic cluster/group that accounted for the combined effects were identified.

Non-ionizing EMF radiation plays a supportive role in a wide range of beneficial and adverse effects. Major beneficial effects include (1) accelerated healing of wounds and injuries in concert with other agents and (2) treatment of cancer by combining chemotherapy with radiation. Major adverse effects, on the other hand, include (1) enhanced carcinogenesis, (2) enhanced cellular or genetic mutations, and (3) teratogenicity. It should be noted that community consensus (unanimity among papers published in peer-reviewed journals) does not exist on these potential effects, either beneficial or adverse, although there is substantial credible scientific evidence supporting the above effects (as described in this chapter).

In daily living, the body is exposed to multiple external agents simultaneously, e.g., myriad non-ionizing EMF radiations, pesticides, food additives, heavy metal, legal and illegal drugs, ionizing radiation, and air pollution. The number of combinations of potential external agents is large. Each combination could potentially have synergistic or antagonistic, and beneficial or adverse, effects. However, non-ionizing EMF radiation exposure safety standards are based primarily on stand-alone radiation exposures. When combined with other agents, the adverse effects of non-ionizing EMF radiation on biological systems may be more severe. Much work remains to be done before definitive statements about non-ionizing EMF radiation exposure safety can be made.

Keywords

EMF Electromagnetic fields Magnetic fields Radio frequency radiation Microwave radiation Interactive effects Combined effects Synergistic effects Additive effects Antagonist effects Potentiative effects Co-promotion Co-mutagenic Co-carcinogenic Combined exposure Combined treatment DMBA TPA Text mining Document clustering 

References

  1. Albrecht MT, Livingston BD, Pesce JT, Bell MG, Hannaman D, Keane-Myers AM (2012) Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague. Vaccine 30(32):4872–4883PubMedCrossRefGoogle Scholar
  2. Aldad TS, Gan G, Gao X-B, Taylor HS (2012) Fetal radiofrequency radiation exposure from 800-1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep 2:312PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alsaeed I, Al-Somali F, Sakhnini L, Aljarallah OS, Hamdan RMM, Bubishate SA, Sarfaraz ZK, Kamal A (2014) Autism-relevant social abnormalities in mice exposed perinatally to extremely low frequency electromagnetic fields. Int J Dev Neurosci 37:58–64PubMedCrossRefGoogle Scholar
  4. Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, Sakly M, Abdelmelek H (2011) Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 27(2):99–106PubMedCrossRefGoogle Scholar
  5. Arruda-Neto JDT, Friedberg EC, Bittencourt-Oliveira MC, Cavalcante-Silva E, Schenberg ACG, Rodrigues TE, Garcia F, Louvison M, Paula CR, Mesa J, Moron MM, Maria DA, Genofre GC (2009) Static electric fields interfere in the viability of cells exposed to ionising radiation. Int J Radiat Biol 85(4):314–321PubMedCrossRefGoogle Scholar
  6. Baum A, Mevissen M, Kamino K, Mohr U, Loscher W (1995) A histopathological study on alterations in DMBA-induced mammary carcinogenesis in rats with 50 Hz, 100 mut magnetic field exposure. Carcinogenesis 16(1):119–125PubMedCrossRefGoogle Scholar
  7. Bediz CS, Baltaci AK, Mogulkoc R, Oztekin E (2006) Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J Exp Med 208(2):133–140PubMedCrossRefGoogle Scholar
  8. Beniashvili DS, Bilanishvili VG, Menabde MZ (1991) Low-frequency electromagnetic radiation enhances the induction of rat mammary tumors by nitrosomethyl urea. Cancer Lett 61(1):75–79PubMedCrossRefGoogle Scholar
  9. Benson EB, Lange DG, Fujimoto JM, Ishii TK (1983) Effects of acute microwave irradiation on phenobarbital sleep and disposition to brain in mice. J Toxicol Environ Health 11(2):261–274CrossRefGoogle Scholar
  10. Bodera P, Stankiewicz W, Zawada K, Antkowiak B, Paluch M, Kieliszek J, Kalicki B, Bartosinski A, Wawer I (2013) Changes in antioxidant capacity of blood due to mutual action of electromagnetic field (1800 Mhz) and opioid drug (tramadol) in animal model of persistent inflammatory state. Pharmacol Rep 65(2):421–428PubMedCrossRefGoogle Scholar
  11. Boga A, Emre M, Sertdemir Y, Akillioglu K, Binokay S, Demirhan O (2015) The effect of 900 and 1800 Mhz GSM-like radiofrequency irradiation and nicotine sulfate administration on the embryonic development of xenopus laevis. Ecotoxicol Environ Saf 113:378–390PubMedCrossRefGoogle Scholar
  12. Bowman JD, Thomas DC, London SJ, Peters JM (1995) Hypothesis: the risk of childhood leukemia is related to combinations of power-frequency and static magnetic fields. Bioelectromagnetics 16(1):48–59PubMedCrossRefGoogle Scholar
  13. Burch JB, Reif JS, Noonan CW, Ichinose T, Bachand AM, Koleber TL, Yost MG (2002) Melatonin metabolite excretion among cellular telephone users. Int J Radiat Biol 78(11):1029–1036PubMedCrossRefGoogle Scholar
  14. Byun Y-H, Ha M, Kwon H-J, Hong Y-C, Leem J-H, Sakong J, Kim SY, Lee CG, Kang D, Choi H-D, Kim N (2013) Mobile phone use, blood lead levels, and attention deficit hyperactivity symptoms in children: a longitudinal study. PLoS One 8(3):e59742PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cadossi R, Zucchini P, Emilia G, Franceschi C, Cossarizza A, Santantonio M, Mandolini G, Torelli G (1991) Effect of low-frequency low-energy pulsing electromagnetic-fields on mice injected with cyclophosphamide. Exp Hematol 19(3):196–201PubMedGoogle Scholar
  16. Canseven AG, Esmekaya MA, Kayhan H, Tuysuz MZ, Seyhan N (2015) effects of microwave exposure and gemcitabine treatment on apoptotic activity in Burkitt’s Lymphoma (Raji) cells. Electromagnetic Biol Med 34(4):322–326CrossRefGoogle Scholar
  17. Cao Y, Zhang W, Lu M-X, Xu Q, Meng Q-Q, Nie J-H, Tong J (2009) 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells. J Toxicol Environ Health A 72(11–12):727–732PubMedCrossRefGoogle Scholar
  18. Chiang H, Wu RY, Shao BJ, Fu YD, Yao GD, Lu DJ (1995) Pulsed magnetic field from video display terminals enhances teratogenic effects of cytosine arabinoside in mice. Bioelectromagnetics 16(1):70–74PubMedCrossRefGoogle Scholar
  19. Cho YH, Chung HW (2003) The effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo (a) pyrene. Toxicol Lett 143(1):37–44PubMedCrossRefGoogle Scholar
  20. Cho YH, Jeon HK, Chung HW (2007) Effects of extremely low-frequency electromagnetic fields on delayed chromosomal instability induced by bleomycin in normal human fibroblast cells. J Toxicol Environ Health A 70(15–16):1252–1258PubMedCrossRefGoogle Scholar
  21. Cho S, Lee Y, Lee S, Choi YJ, Chung HW (2014) Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug Chem Toxicol 37(4):440–447PubMedCrossRefGoogle Scholar
  22. CLUTO (2015) http://glarosdtcumnedu/gkhome/views/cluto, University of Minnesota
  23. Coureau G, Bouvier G, Lebailly P, Fabbro-Peray P, Gruber A, Leffondre K, Guillamo J-S, Loiseau H, Mathoulin-Pelissier S, Salamon R, Baldi I (2014) mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med 71(7):514–522PubMedCrossRefGoogle Scholar
  24. Dart P, Cordes K Elliott A, Knackstedt J, Morgan J, Wible P (2013) Biological and health effects of microwave radio frequency transmissions: a review of the research literature. http://wwwnational-toxic-encephalopathy-foundationorg/wp-content/uploads/2012/01/Biological_and_Health_Effects_of_Microwave_Radio_Frequency_Transmissionspdf
  25. Davidse RJ, VanRaan AFJ (1997) Out of particles: impact of CERN, DESY and SLAC research to fields other than physics. Scientometrics 40(2):171–193CrossRefGoogle Scholar
  26. de Vocht F, Hannam K, Buchan I (2013) Environmental risk factors for cancers of the brain and nervous system: the use of ecological data to generate hypotheses. Occup Environ Med 70(5):349–356PubMedCrossRefGoogle Scholar
  27. Deger S, Boehmer D, Turk I, Roigas J, Budach V, Loening SA (2002) Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. Eur Urol 42(2):147–153PubMedCrossRefGoogle Scholar
  28. Dicarlo AL, Hargis MT, Penafiel LM, Litovitz TA (1999) Short-term magnetic field exposures (60 Hz) induce protection against ultraviolet radiation damage. Int J Radiat Biol 75(12):1541–1549PubMedCrossRefGoogle Scholar
  29. Ding GR, Yaguchi H, Yoshida M, Miyakoshi J (2000) Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5 Mt) In NF-Kappab-inhibited cells. Biochem Biophys Res Commun 276(1):238–243PubMedCrossRefGoogle Scholar
  30. Dode AC, Leao MMD, Tejo F d AF, Gomes ACR, Dode DC, Dode MC, Moreira CW, Condessa VA, Albinatti C, Caiaffa WT (2011) Mortality by neoplasia and cellular telephone base stations in the Belo horizonte municipality, Minas Gerais State, Brazil. Sci Total Environ 409(19):3649–3665PubMedCrossRefGoogle Scholar
  31. Dolat E, Rajabi O, Salarabadi SS, Yadegari-Dehkordi S, Sazgarnia A (2015) Silver nanoparticles and electroporation: their combinational effect on leishmania major. Bioelectromagnetics 36(8):586–596PubMedCrossRefGoogle Scholar
  32. Eger H, Hagen KU, Lucas B, Vogel P, Voit H (2004) The influence of being physically near to a cell phone transmission mast on the incidence of cancer. Umwelt Medizin Gesellschaft 17:4Google Scholar
  33. Elferchichi M, Maaroufi K, Sakly M, Abdelmelek H (2015) Effects of combined ferrous sulfate administration and exposure to static magnetic field on brain oxidative stress and emotional behavior. Arch Ital Biol 153(1):37–45PubMedGoogle Scholar
  34. Engstrom PE, Persson BR, Brun A, Salford LG (2001) A new antitumour treatment combining radiation and electric pulses. Anticancer Res 21(3B):1809–1815PubMedGoogle Scholar
  35. Fazzo L, Tancioni V, Polichetti A, Iavarone I, Vanacore N, Papini P, Farchi S, Bruno C, Pasetto R, Borgia P, Comba P (2009) Morbidity experience in populations residentially exposed to 50 hz magnetic fields: methodology and preliminary findings of a cohort study. Int J Occup Environ Health 15(2):133–142PubMedCrossRefGoogle Scholar
  36. Federal Communications Commission Office of Engineering & Technology. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields OET Bulletin 65, Edition 97–01, August 1997 https://transitionfccgov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65pdf
  37. Fedrowitz M, Kamino K, Loscher W (2004) Significant differences in the effects of magnetic field exposure on 7,12-dimethylbenz (a) anthracene-induced mammary carcinogenesis in two substrains of sprague-dawley rats. Cancer Res 64(1):243–251PubMedCrossRefGoogle Scholar
  38. Feldman R, Dagan I, Hirsh H (1998) Mining text using keyword distributions. J Intell Inf Syst 10(3):281–300CrossRefGoogle Scholar
  39. Fiorani M, Biagiarelli B, Vetrano F, Guidi G, Dacha M, Stocchi V (1997) In vitro effects of 50 Hz magnetic fields on oxidatively damaged rabbit red blood cells. Bioelectromagnetics 18(2):125–131PubMedCrossRefGoogle Scholar
  40. Fulimoto T, Maeda H, Kubo K, Sugita Y, Nakashima T, Sato E, Tanaka Y, Madachi M, Aiba M, Kameyama Y (2005) Enhanced anti-tumour effect of cisplatin with low-voltage electrochemotherapy in hamster oral fibrosarcoma. J Int Med Res 33(5):507–512PubMedCrossRefGoogle Scholar
  41. Gajski G, Garaj-Vrhovac V (2009) Radioprotective effects of honeybee venom (Apis mellifera) against 915-MHz microwave radiation-induced DNA damage in wistar rat lymphocytes: in vitro study. Int J Toxicol 28(2):88–98PubMedCrossRefGoogle Scholar
  42. Gellrich D, Becker S, Strieth S (2014) Static magnetic fields increase tumor microvessel leakiness and improve antitumoral efficacy in combination with paclitaxel. Cancer Lett 343(1):107–114PubMedCrossRefGoogle Scholar
  43. Giladi M, Porat Y, Blatt A, Wasserman Y, Kirson ED, Dekel E, Palti Y (2008) Microbial growth inhibition by alternating electric fields. Antimicrob Agents Chemother 52(10):3517–3522PubMedPubMedCentralCrossRefGoogle Scholar
  44. Girgin S, Ozturk H, Gedik E, Akpolat V, Kale E (2009) Effect of a 50-Hz sinusoidal electromagnetic field on the integrity of experimental colonic anastomoses covered with fibrin glue. Adv Clin Exp Med 18(1):13–18Google Scholar
  45. Gmitrov J (2007) Geomagnetic field modulates artificial static magnetic field effect on arterial baroreflex and on microcirculation. Int J Biometeorol 51(4):335–344PubMedCrossRefGoogle Scholar
  46. Gmitrov J, Ohkubo C (1999) Static magnetic field and calcium channel blocking agent combined effect on baroreflex sensitivity in rabbits. Electro Magnetobiol Med 18(1):43–55CrossRefGoogle Scholar
  47. Gobba F, Bargellini A, Scaringi M, Bravo G, Borella P (2009) extremely low frequency-magnetic fields (ELF-EMF) occupational exposure and natural killer activity in peripheral blood lymphocytes. Sci Total Environ 407(3):1218–1223PubMedCrossRefGoogle Scholar
  48. Greengrass E (1997) Information retrieval: an overview, national security agency, TR-R52–02-96Google Scholar
  49. Gronevik E, Mathiesen I, Lomo T (2005) Early events of electroporation-mediated intramuscular DNA vaccination potentiate thi-directed immune responses. J Gene Med 7(9):1246–1254PubMedCrossRefGoogle Scholar
  50. Grosel A, Sersa G, Kranjc S, Cemazar M (2006) Electrogene therapy with P53 of murine sarcomas alone or combined with electrochemotherapy using cisplatin. DNA Cell Biol 25(12):674–683PubMedCrossRefGoogle Scholar
  51. Guler G, Turkozer Z, Tomruk A, Seyhan N (2008) The protective effects of N-acetyl-L-cysteine and epigallocatechin-3-gallate on electric field-induced hepatic oxidative stress. Int J Radiat Biol 84(8):669–680PubMedCrossRefGoogle Scholar
  52. Gulturk S, Demirkazik A, Kosar I, Cetin A, Dokmetas HS, Demir T (2010) Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotocin-induced diabetic rats. Bioelectromagnetics 31(4):262–269PubMedGoogle Scholar
  53. Gumral N, Naziroglu M, Koyu A, Ongel K, Celik O, Saygin M, Kahriman M, Caliskan S, Kayan M, Gencel O, Flores-Arce MF (2009) Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 245-GHz radiation from wireless devices. Biol Trace Elem Res 132(1–3):153–163PubMedCrossRefGoogle Scholar
  54. Guseinzade KM, Agakishiyev DD, Mejidov NM (1991) Magnetotherapy of trophic ulcers of the shin. Vestnik Dermatologii I Venerologii 11:61–64Google Scholar
  55. Ha M, Im H, Lee M, Kim HJ, Kim B-C, Gimm Y-M, Pack J-K (2007) Radio-frequency radiation exposure from AM radio transmitters and childhood leukemia and brain cancer. Am J Epidemiol 166(3):270–279PubMedCrossRefGoogle Scholar
  56. Hakansson N, Gustavsson P, Sastre A, Floderus B (2003) Occupational exposure to extremely low frequency magnetic fields and mortality from cardiovascular disease. Am J Epidemiol 158(6):534–542PubMedCrossRefGoogle Scholar
  57. Hanci H, Odaci E, Kaya H, Aliyazicioglu Y, Turan I, Demir S, Colakoglu S (2013) The effect of prenatal exposure to 900-Mhz electromagnetic field on the 21-old-day rat testicle. Reprod Toxicol (Elmsford, NY) 42:203–209CrossRefGoogle Scholar
  58. Hardell L, Carlberg M, Hansson Mild K (2011) Pooled analysis of case-control studies on malignant brain tumours and the use of mobile and cordless phones including living and deceased subjects. Int J Oncol 38(5):1465–1474PubMedCrossRefGoogle Scholar
  59. Haro AMR, Smyth A, Hughes P, Reid CN (2005) McHale AP electro-sensitisation of mammalian cells and tissues to ultrasound: a novel tumour treatment modality. Cancer Lett 222(1):49–55CrossRefGoogle Scholar
  60. Hassan NS, Abdelkawi SA (2014) Assessing of plasma protein denaturation induced by exposure to cadmium, electromagnetic fields and their combined actions on rat. Electromagnetic Biol Med 33(2):147–153CrossRefGoogle Scholar
  61. Hearst MA (1999) Untangling text data mining proceedings of ACL 99, the 37th annual meeting of the association for computational linguistics, University of Maryland, 1999, June 20–26Google Scholar
  62. Hintenlang DE (1993) Synergistic effects of ionizing radiation and 60 Hz magnetic fields. Bioelectromagnetics 14(6):545–551PubMedCrossRefGoogle Scholar
  63. Hirao LA, Wu L, Khan AS, Hokey DA, Yan J, Dai AL, Betts MR, Draghia-Akli R, Weiner DB (2008) Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 26(25):3112–3120PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hocking B, Gordon I (2003) Decreased survival for childhood leukemia in proximity to television towers. Arch Environ Health 58(9):560–564PubMedCrossRefGoogle Scholar
  65. Hocking B, Gordon IR, Grain HL, Hatfield GE (1996) cancer incidence and mortality and proximity to TV towers. Med J Aust 165(11–12):601–605PubMedGoogle Scholar
  66. Huss A, Egger M, Hug K, Huwiler-Muntener K, Roosli M (2007) Source of funding and results of studies of health effects of mobile phone use: systematic review of experimental studies. Environ Health Perspect 115(1):1–4PubMedCrossRefGoogle Scholar
  67. Ismael SJ, Callera F, Garcia AB, Baffa O, Falcao RP (1998) Increased dexamethasone-induced apoptosis of thymocytes from mice exposed to long-term extremely low frequency magnetic fields. Bioelectromagnetics 19(2):131–135PubMedCrossRefGoogle Scholar
  68. Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8(9):649–654PubMedCrossRefGoogle Scholar
  69. Ito A, Matsuoka F, Honda H, Kobayashi T (2003) Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther 10(12):918–925PubMedCrossRefGoogle Scholar
  70. Jaroszeski MJ, Illingworth P, Pottinger C, Hyacinthe M, Heller R (1999) Electrically mediated drug delivery for treating subcutaneous and orthotopic pancreatic adenocarcinoma in a hamster model. Anticancer Res 19(2A):989–994PubMedGoogle Scholar
  71. Jia HL, Wang C, Li Y, Lu Y, Wang PP, Pan WD, Song T (2014) Combined effects of 50 Hz magnetic field and magnetic nanoparticles on the proliferation and apoptosis of PC12 cells. Biomed Environ Sci 27(2):97–105PubMedGoogle Scholar
  72. Jian W, Wei Z, Zhiqiang C, Zheng F (2009) X-ray-induced apoptosis of BEL-7402 cell line enhanced by extremely low frequency electromagnetic field in vitro. Bioelectromagnetics 30(2):163–165PubMedCrossRefGoogle Scholar
  73. Jouni FJ, Abdolmaleki P, Ghanati F (2012) Oxidative stress in broad bean (Vicia faba L) induced by static magnetic field under natural radioactivity. Mut Res Gen Toxicol Environ Mutagen 741(1–2):116–121CrossRefGoogle Scholar
  74. Junkersdorf B, Bauer H, Gutzeit HO (2000) Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans. Bioelectromagnetics 21(2):100–106PubMedCrossRefGoogle Scholar
  75. Juutilainen J (2008) Do electromagnetic fields enhance the effects of environmental carcinogens? Radiat Prot Dosim 132(2):228–231CrossRefGoogle Scholar
  76. Juutilainen J, Kumlin T, Naarala J (2006) Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies. Int J Radiat Biol 82(1):1–12PubMedCrossRefGoogle Scholar
  77. Kang KS, Hong JM, Jeong YH, Seol YJ, Yong WJ, Rhie JW, Cho DW (2014) Combined effect of three types of biophysical stimuli for bone regeneration. Tissue Eng A 20(11–12):1767–1777CrossRefGoogle Scholar
  78. Karner KB, Lesnicar H, Cemazar M, Sersa G (2004) Antitumour effectiveness of hyperthermia is potentiated by local application of electric pulses to LPB tumours in mice. Anticancer Res 24(4):2343–2348PubMedGoogle Scholar
  79. Khan SI, Blumrosen G, Vecchio D, Golberg A, McCormack MC, Yarmush ML, Hamblin MR, Austen WG (2016) Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields. Biotechnol Bioeng 113(3):643–650PubMedCrossRefGoogle Scholar
  80. Kim K, Lee JY (1998) Strain improvement of yeast for ethanol production using a combined treatment of electric field and chemical mutagen N-methyl-N ‘-nitro-N-nitrosoguanidine. J Microbiol Biotechnol 8(2):119–123Google Scholar
  81. Kostoff RN (2008) Literature-related discovery (LRD): introduction and background. Technol Forecast Soc Chang 75(2):165–185CrossRefGoogle Scholar
  82. Kostoff RN (2011) Literature-related discovery: potential treatments and preventatives for SARS. Technol Forecast Soc Chang 78(7):1164–1173CrossRefGoogle Scholar
  83. Kostoff RN (2012) Literature-related discovery and innovation – update. Technol Forecast Soc Chang 79(4):789–800CrossRefGoogle Scholar
  84. Kostoff RN (2015) Pervasive causes of disease. Georgia Institute of Technology, Atlanta, GA. PDF http://hdlhandlenet/1853/53714
  85. Kostoff RN, Briggs MB (2008) Literature-related discovery (LRD): potential treatments for parkinson’s disease. Technol Forecast Soc Chang 75(2):226–238CrossRefGoogle Scholar
  86. Kostoff RN, Lau CGY (2013) Combined biological and health effects of electromagnetic fields and other agents in the published literature. Technol Forecast Soc Chang 80(7):1331–1349CrossRefGoogle Scholar
  87. Kostoff RN, Los LI (2013) Literature-related discovery techniques applied to ocular disease: a vitreous restoration example. Curr Opin Ophthalmol 24(6):606–610PubMedCrossRefGoogle Scholar
  88. Kostoff RN, Patel U (2015) Literature-related discovery and innovation: chronic kidney disease. Technol Forecast Soc Chang 91:341–351CrossRefGoogle Scholar
  89. Kostoff RN, Eberhart HJ, Toothman DR (1997) Database tomography for information retrieval. J Inf Sci 23(4):301–311CrossRefGoogle Scholar
  90. Kostoff RN, Toothman DR, Eberhart HJ, Humenik JA (2001a) Text mining using database tomography and bibliometrics: a review. Technol Forecast Soc Chang 68(3):223–253CrossRefGoogle Scholar
  91. Kostoff RN, del Rio JA, Humenik JA, Garcia EO, Ramirez AM (2001b) Citation mining: integrating text mining and bibliometrics for research user profiling. J Am Soc Inf Sci Technol 52(13):1148–1156CrossRefGoogle Scholar
  92. Kostoff RN, Briggs MB, Solka JL, Rushenberg RL (2008a) Literature-related discovery (LRD): methodology. Technol Forecast Soc Chang 75(2):186–202CrossRefGoogle Scholar
  93. Kostoff RN, Briggs MB, Lyons TJ (2008b) Literature-related discovery (LRD): potential treatments for multiple sclerosis. Technol Forecast Soc Chang 75(2):239–255CrossRefGoogle Scholar
  94. Kostoff RN, Solka JL, Rushenberg RL, Wyatt JA (2008c) Literature-related discovery (LRD): water purification. Technol Forecast Soc Chang 75(2):256–275CrossRefGoogle Scholar
  95. Kostoff RN, Block JA, Stump JA, Johnson D (2008d) Literature-related discovery (LRD): potential treatments for Raynaud’s Phenomenon. Technol Forecast Soc Chang 75(2):203–214CrossRefGoogle Scholar
  96. Kostoff RN, Block JA, Solka JRL, Briggs MB, Rushenberg RL, Stump JA, Johnson D, Lyons TJ, Wyatt JR (2008e) Literature-related discovery (LRD): lessons learned, and future research directions. Technol Forecast Soc Chang 75(2):276–299CrossRefGoogle Scholar
  97. Koyama S, Nakahara T, Sakurai T, Komatsubara Y, Isozumi Y, Miyakoshi J (2005) Combined exposure of ELF magnetic fields and x-rays increased mutant yields compared with X-rays alone in Ptn89 plasmids. J Radiat Res 46(2):257–264PubMedCrossRefGoogle Scholar
  98. Koyama S, Sakurai T, Nakahara T, Miyakoshi J (2008) Extremely low frequency (ELF) magnetic fields enhance chemically induced formation of apurinic/apyrimidinic (AP) sites in A172 cells. Int J Radiat Biol 84(1):53–59PubMedCrossRefGoogle Scholar
  99. Kundi M (2010) The controversy about a possible relationship between mobile phone use and cancer. Cien Saude Colet 15(5):2415–2430PubMedCrossRefGoogle Scholar
  100. Lagace N, St-Pierre LS, Persinger MA (2009) Attenuation of epilepsy-induced brain damage in the temporal cortices of rats by exposure to LTP-patterned magnetic fields. Neurosci Lett 450(2):147–151PubMedCrossRefGoogle Scholar
  101. Lange DG, Sedmak J (1991) Japanese encephalitis virus (JEV): potentiation of lethality in mice by microwave radiation. Bioelectromagnetics 12(6):335–348PubMedCrossRefGoogle Scholar
  102. Lee WR, Shen SC, Fang CL, Zhuo RZ, Fang JY (2008) Topical delivery of methotrexate via skin pretreated with physical enhancement techniques: low-fluence erbium: YAG laser and electroporation. Lasers Surg Med 40(7):468–476PubMedCrossRefGoogle Scholar
  103. Lee HJ, Jin YB, Lee JS, Choi JI, Lee JW, Myung SH, Lee YS (2012) Combined effects of 60 Hz electromagnetic field exposure with various stress factors on cellular transformation in NIH3T3 cells. Bioelectromagnetics 33(3):207–214PubMedCrossRefGoogle Scholar
  104. Lei Y, Liu T, Wilson FAW, Zhou D, Ma Y, Hu X (2005) Effects of extremely low-frequency electromagnetic fields on morphine-induced conditioned place preferences in rats. Neurosci Lett 390(2):72–75PubMedCrossRefGoogle Scholar
  105. Lerchl A, Klose M, Grote K, Wilhelm AFX, Spathmann O, Fiedler T, Streckert J, Hansen V, Clemens M (2015) Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochem Biophys Res Commun 459(4):585–590PubMedCrossRefGoogle Scholar
  106. Levitt BB, Lai H (2010) Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev 18:369–395CrossRefGoogle Scholar
  107. Li D-K, Odouli R, Wi S, Janevic T, Golditch I, Bracken TD, Senior R, Rankin R, Iriye R (2002) A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage. Epidemiology (Cambridge, MA) 13(1):9–20CrossRefGoogle Scholar
  108. Li D-K, Yan B, Li Z, Gao E, Miao M, Gong D, Weng X, Ferber JR, Yuan W (2010) exposure to magnetic fields and the risk of poor sperm quality. Reprod Toxicol (Elmsford, NY) 29(1):86–92CrossRefGoogle Scholar
  109. Li D-K, Chen H, Odouli R (2011) Maternal exposure to magnetic fields during pregnancy in relation to the risk of asthma in offspring. Arch Pediatr Adolesc Med 165(10):945–950PubMedCrossRefGoogle Scholar
  110. Liu Y, Qi H, Sun RG, Chen WF (2011) An investigation into the combined effect of static magnetic fields and different anticancer drugs on K562 cell membranes. Tumori 97(3):386–392PubMedGoogle Scholar
  111. Liu Q, Si T, Xu X, Liang F, Wang L, Pan S (2015) Electromagnetic radiation at 900 Mhz induces sperm apoptosis through Bcl-2, bax and caspase-3 signaling pathways in rats. Reprod Health 12:65PubMedPubMedCentralCrossRefGoogle Scholar
  112. Luukkonen J, Hakulinen P, Maki-Paakkanen J, Juutilainen J, Naarala J (2009) Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 Mhz radiofrequency radiation. Mutat Res 662(1–2):54–58PubMedCrossRefGoogle Scholar
  113. Luukkonen J, Liimatainen A, Hoyto A, Juutilainen J, Naarala J (2011) Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells. Plos One 6(3):e18021PubMedPubMedCentralCrossRefGoogle Scholar
  114. Luxembourg A, Hannaman D, Nolan E, Ellefsen B, Nakamura G, Chau L, Tellez O, Little S, Bernard R (2008) Potentiation of an anthrax DNA vaccine with electroporation. Vaccine 26(40):5216–5222PubMedCrossRefGoogle Scholar
  115. Maaroufi K, Save E, Poucet B, Sakly M, Abdelmelek H, Had-Aissouni L (2011) Oxidative stress and prevention of the adaptive response to chronic iron overload in the brain of young adult rats exposed to a 150 kilohertz electromagnetic field. Neuroscience 186:39–47PubMedCrossRefGoogle Scholar
  116. Mahmoudabadi FS, Ziaei S, Firoozabadi M, Kazemnejad A (2015) Use of mobile phone during pregnancy and the risk of spontaneous abortion. J Environ Health Sci Eng 13:34PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mailhes JB, Young D, Marino AA, London SN (1997) Electromagnetic fields enhance chemically-induced hyperploidy in mammalian oocytes. Mutagenesis 12(5):347–351PubMedCrossRefGoogle Scholar
  118. Mairs RJ, Hughes K, Fitzsimmons S, Prise KM, Livingstone A, Wilson L, Baig N, Clark AM, Timpson A, Patel G, Folkard M, Angerson WJ, Boyd M (2007) Microsatellite analysis for determination of the mutagenicity of extremely low-frequency electromagnetic fields and ionising radiation in vitro. Mutat Res 626(1–2):34–41PubMedCrossRefGoogle Scholar
  119. Marcantonio P, Del Re B, Franceschini A, Capri M, Lukas S, Bersani F, Giorgi G (2010) Synergic effect of retinoic acid and extremely low frequency magnetic field exposure on human neuroblastoma cell line BE(2)C. Bioelectromagnetics 31(6):425–433PubMedGoogle Scholar
  120. Marcickiewicz J, Chazan B, Niemiec T, Sokolska G, Troszynski M, Luczak M, Szmigielski S (1986) Microwave-radiation enhances the teratogenic effect of cytosine-arabinoside in mice. Biol Neonate 50(2):75–82PubMedCrossRefGoogle Scholar
  121. McKay BE, Persinger MA (2003) Combined effects of complex magnetic fields and agmatine for contextual fear learning deficits in rats. Life Sci 72(22):2489–2498PubMedCrossRefGoogle Scholar
  122. McLean MJ, Engstrom S, Holcomb RR, Sanchez D (2003) A static magnetic field modulates severity of audiogenic seizures and anticonvulsant effects of phenytoin in DBA/2 mice. Epilepsy Res 55(1–2):105–116PubMedCrossRefGoogle Scholar
  123. Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP (2015) Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology 51:158–165PubMedCrossRefGoogle Scholar
  124. Mendonca FAS, Passarini JR, Esquisatto MAM, Mendonca JS, Franchini CC, dos Santos GMT (2009) Effects of the application of Aloe vera (L) and microcurrent on the healing of wounds surgically induced in wistar rats. Acta Cir Bras 24(2):150–155PubMedCrossRefGoogle Scholar
  125. Mevissen M, Haussler M, Lerchl A, Loscher W (1998) Acceleration of mammary tumorigenesis by exposure of 7,12-dimethylbenz a anthracene-treated female rats in a 50-Hz, 100-microt magnetic field: replication study. J Toxicol Environ Health A 53(5):401–418PubMedCrossRefGoogle Scholar
  126. Michaels D (2008) Doubt is their product: how industry’s assault on science threatens your health, 1st edn. Oxford University Press, OxfordGoogle Scholar
  127. Michelozzi P, Capon A, Kirchmayer U, Forastiere F, Biggeri A, Barca A, Perucci CA (2002) Adult and childhood leukemia near a high-power radio station in Rome. Ital Am J Epidemiol 155(12):1096–1103CrossRefGoogle Scholar
  128. Miller AB, To T, Agnew DA, Wall C, Green LM (1996) Leukemia following occupational exposure to 60-Hz electric and magnetic fields among ontario electric utility workers. Am J Epidemiol 144(2):150–160PubMedCrossRefGoogle Scholar
  129. Miyakoshi Y, Kajihara C, Shimizu H, Yanagisawa H (2012) Tempol suppresses micronuclei formation in astrocytes of newborn rats exposed to 50-Hz, 10-Mt electromagnetic fields under bleomycin administration. Mutat Res 747(1):138–141PubMedCrossRefGoogle Scholar
  130. Motawi TK, Darwish HA, Moustafa YM, Labib MM (2014) Biochemical modifications and neuronal damage in brain of young and adult rats after long-term exposure to mobile phone radiations. Cell Biochem Biophys 70(2):845–855PubMedCrossRefGoogle Scholar
  131. Murthy SN, Zhao YL, Hui SW, Sen A (2006) Synergistic effect of anionic lipid enhancer and electroosmosis for transcutaneous delivery of insulin. Int J Pharm 326(1–2):1–6CrossRefGoogle Scholar
  132. Navas-Acien A, Pollan M, Gustavsson P, Floderus B, Plato N, Dosemeci M (2002) Interactive effect of chemical substances and occupational electromagnetic field exposure on the risk of gliomas and meningiomas in Swedish men. Cancer Epidemiol Biomarkers Prev 11(12):1678–1683PubMedGoogle Scholar
  133. Nelson BK, Conover DL, Shaw PB, Snyder DL, Edwards RM (1997) Interactions of radiofrequency radiation on 2-methoxyethanol teratogenicity in rats. J Appl Toxicol: JAT 17(1):31–39PubMedCrossRefGoogle Scholar
  134. Novickij V, Grainys A, Svediene J, Markovskaja S, Paskevicius A, Novickij J (2014) Microsecond pulsed magnetic field improves efficacy of antifungal agents on pathogenic microorganisms. Bioelectromagnetics 35(5):347–353PubMedCrossRefGoogle Scholar
  135. Ogihara M, Yamaguchi O (2000) Potentiation of effects of anticancer agents by local electric pulses in murine bladder cancer. Urol Res 28(6):391–397PubMedCrossRefGoogle Scholar
  136. Okada M, Kim JH, Yoon ST, Hutton WC (2013) Pulsed electromagnetic field (PEMF) plus BMP-2 upregulates intervertebral disc-cell matrix synthesis more than either BMP-2 alone or PEMF alone. J Spinal Disord Tech 26(6):E221–E226PubMedCrossRefGoogle Scholar
  137. Okano H, Ohkubo C (2006) Elevated plasma nitric oxide metabolites in hypertension: synergistic vasodepressor effects of a static magnetic field and nicardipine in spontaneously hypertensive rats. Clin Hemorheol Microcirc 34(1–2):303–308PubMedGoogle Scholar
  138. Ongaro A, Pellati A, Bagheri L, Fortini C, Setti S, De Mattei M (2014) Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 35(6):426–436PubMedCrossRefGoogle Scholar
  139. Oreskes N, Conway EM (2011) Merchants of doubt: how a handful of scientists obscured the truth on issues from tobacco smoke to global warming. Bloomsbury Press, New YorkGoogle Scholar
  140. Ossenkopp KP, Kavaliers M (1987) MORPHINE-induced analgesia and exposure to low-intensity 60-Hz magnetic-fields – inhibition of nocturnal analgesia in mice is a function of magnetic-field intensity. Brain Res 418(2):356–360PubMedCrossRefGoogle Scholar
  141. Ozguner F, Oktem F, Ayata A, Koyu A, Yilmaz HR (2005) A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat – prognostic value of malondialdehyde, N-acetyl-beta-D-glucosaminidase and nitric oxide determination. Mol Cell Biochem 277(1–2):73–80PubMedCrossRefGoogle Scholar
  142. Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR (1998) Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics 19(7):393–413PubMedCrossRefGoogle Scholar
  143. Pall ML (2015a) Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat 75:43–51 pii: S0891-0618(15)00059-9 doi: 101016/jjchemneu201508001PubMedCrossRefGoogle Scholar
  144. Pall ML (2015b) Presentation to AutismOne Conference, 23 May 2015. https://wwwyoutubecom/watch?v=yydZZanRJ50
  145. Pol IE, Mastwijk HC, Bartels PV, Smid EJ (2000) Pulsed-electric field treatment enhances the bactericidal action of nisin against bacillus cereus. Appl Environ Microbiol 66(1):428–430PubMedPubMedCentralCrossRefGoogle Scholar
  146. Purushotham S, Ramanujan RV (2010) Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys 107(11):114701CrossRefGoogle Scholar
  147. Quock RM, Kouchich FJ, Ishii TK, Lange DG (1986a) Microwave facilitation of methylnaltrexone antagonism of morphine-induced analgesia in mice. J Bioelectricity 5(1):35–46CrossRefGoogle Scholar
  148. Quock RM, Fujimoto JM, Ishii TK, Lange DG (1986b) Microwave facilitation of methylatropine antagonism of central cholinomimetic drug effects. Radiat Res 105(3):328–340PubMedCrossRefGoogle Scholar
  149. Quock RM, Kouchich FJ, Ishii TK, Lange DG (1987) Microwave facilitation of domperidone antagonism of apomorphine-induced stereotypic climbing in mice. Bioelectromagnetics 8(1):45–55PubMedCrossRefGoogle Scholar
  150. Rajkovic V, Matavulj M, Johansson O (2010) Combined exposure of peripubertal male rats to the endocrine-disrupting compound atrazine and power-frequency electromagnetic fields causes degranulation of cutaneous mast cells: a new toxic environmental hazard? Arch Environ Contam Toxicol 59(2):334–341PubMedCrossRefGoogle Scholar
  151. Raskmark P, Kwee S (1996) The minimizing effect of electromagnetic noise on the changes in cell proliferation caused by ELF magnetic fields. Bioelectrochem Bioenerg 40(2):193–196CrossRefGoogle Scholar
  152. Riddle MM, Smialowicz RJ, Rogers RR (1982) Microwave-radiation (2450-Mhz) potentiates the lethal effect of endotoxin in mice. Health Phys 42(3):335–340PubMedCrossRefGoogle Scholar
  153. Rihova B, Etrych T, Sirova M, Tomala J, Ulbrich K, Kovar M (2011) Synergistic effect of EMF-BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma. J Drug Target 19(10):890–899PubMedCrossRefGoogle Scholar
  154. Rodriguez-Garcia JA, Ramos F (2012) High incidence of acute leukemia in the proximity of some industrial facilities in El Bierzo, Northwestern Spain. Int J Occup Med Environ Health 25(1):22–30PubMedCrossRefGoogle Scholar
  155. Rojavin MA, Ziskin MC (1997) Electromagnetic millimeter waves increase the duration of anaesthesia caused by ketamine and chloral hydrate in mice. Int J Radiat Biol 72(4):475–480PubMedCrossRefGoogle Scholar
  156. Roux C, Elefant E, Gaboriaud G, Jaullery C, Gardette J, Dupuis R, Lambert D (1986) Association of microwaves and ionizing radiation: potentiation of teratogenic effects in the rat. Radiat Res 108(3):317–326PubMedCrossRefGoogle Scholar
  157. Roux S, Bernat C, Al-Sakere B, Ghiringhelli F, Opolon P, Carpentier AF, Zitvogel L, Mir LM, Robert C (2008) Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol Immunother CII 57(9):1291–1300PubMedCrossRefGoogle Scholar
  158. Ruiz-Gomez MJ, Martinez-Morillo M (2005) Enhancement of the cell-killing effect of ultraviolet-C radiation by short-term exposure to a pulsed magnetic field. Int J Radiat Biol 81(7):483–490PubMedCrossRefGoogle Scholar
  159. Ruzic R, Vodnik D, Jerman I (2000) Influence of aluminum in biologic effects of ELF magnetic field stimulation. Electro- Magnetobiol 19(1):57–68CrossRefGoogle Scholar
  160. Saikhedkar N, Bhatnagar M, Jain A, Sukhwal P, Sharma C, Jaiswal N (2014) Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurol Res 36(12):1072–1079PubMedCrossRefGoogle Scholar
  161. Sandyk R (1997) Treatment with AC pulsed electromagnetic fields improves the response to levodopa in parkinson’s disease. Int J Neurosci 91(3–4):189–197PubMedCrossRefGoogle Scholar
  162. Sasikala ARK, Unnithan AR, Yun Y-H, Park CH, Kim CS (2016) An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater 31:122–133PubMedCrossRefGoogle Scholar
  163. Satoh M, Tsuji Y, Watanabe Y, Okonogi H, Suzuki Y, Nakagawa M, Shimizu H (1996) Metallothionein content increased in the liver of mice exposed to magnetic fields. Arch Toxicol 70(5):315–318PubMedCrossRefGoogle Scholar
  164. Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD (2008) Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res 26(9):1250–1255PubMedCrossRefGoogle Scholar
  165. Selvarnurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC (2007) Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res 25(9):1213–1220CrossRefGoogle Scholar
  166. Sergeeva EY, Titova NM, Sherbinina AS, Sergeev NV, Shirokova AV (2011) Effect of magnetic fields on antioxidant system enzymes in mice with ehrlich ascites Carcinoma. Bull Exp Biol Med 150(3):365–367PubMedCrossRefGoogle Scholar
  167. Shil P, Sanghvi SH, Vidyasagar PB, Mishra KP (2005) Enhancement of radiation cytotoxicity in murine cancer cells by electroporation: in vitro and in vivo studies. J Environ Pathol Toxicol Oncol 24(4):291–298PubMedCrossRefGoogle Scholar
  168. Shtemberg AS, Bazyan AS, Shikhov SN, Chernyakov GM, Uzbekov MG (2001) Modulatory influence of ultralow-intensity electromagnetic fields on the effects of some psychotropic drugs. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I P Pavlova 51(3):373–377Google Scholar
  169. Slesin L (2006) “Radiation research” and the cult of negative results, Microwave News. http://microwavenewscom/RRhtml, 31 July
  170. Soffritti M, Tibaldi E, Padovani M, Hoel DG, Giuliani L, Bua L, Lauriola M, Falcioni L, Manservigi M, Manservisi F, Panzacchi S, Belpoggi F (2016) Life-span exposure to sinusoidal-50 Hz magnetic field and acute low-dose gamma radiation induce carcinogenic effects in sprague-dawley rats. Int J Radiat Biol 92(4):202–214PubMedCrossRefGoogle Scholar
  171. Stam R (2010) Electromagnetic fields and the blood-brain barrier. Brain Res Rev 65(1):80–97PubMedCrossRefGoogle Scholar
  172. Stride E, Porter C, Prieto AG, Pankhurst Q (2009) Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Ultrasound Med Biol 35(5):861–868PubMedCrossRefGoogle Scholar
  173. Swanson DR (1986) Fish oil, raynauds syndrome, and undiscovered public knowledge. Perspect Biol Med 30(1):7–18PubMedCrossRefGoogle Scholar
  174. Swanson DR, Smalheiser NR, Bookstein A (2001) Information discovery from complementary literatures: categorizing viruses as potential weapons. J Am Soc Inf Sci Technol 52(10):797–812CrossRefGoogle Scholar
  175. Szudzinski A, Pietraszek A, Janiak M, Wrembel J, Kalczak M, Szmigielski S (1982) Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation. Arch Dermatol Res 274(3–4):303–312PubMedCrossRefGoogle Scholar
  176. Tao Q, Henderson A (1999) EMF induces differentiation in HL-60 cells. J Cell Biochem 73(2):212–217PubMedCrossRefGoogle Scholar
  177. Tenorio BM, Jimenez GC, de Morais RN, Peixoto CA, de Albuquerque Nogueira R, da Silva VA Jr (2012) Evaluation of testicular degeneration induced by low-frequency electromagnetic fields. J Appl Toxicol 32(3):210–218PubMedCrossRefGoogle Scholar
  178. The Bioinitiative Report (2012) http://wwwbioinitiativeorg/
  179. Tikhonchuk VS, Ushakov IB, Fedorov VP (1987) Structural and metabolic analysis of the reaction of the central nervous system to the combined action of microwave and ionizing radiations. Radiobiologiia 27(3):361–365PubMedGoogle Scholar
  180. Tokumoto S, Higo N, Sugibayashi K (2006) Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. Int J Pharm 326(1–2):13–19PubMedCrossRefGoogle Scholar
  181. Trillo MA, Martinez MA, Cid MA, Leal J, Ubeda A (2012) Influence of a 50 Hz magnetic field and of all-trans-retinol on the proliferation of human cancer cell lines. Int J Oncol 40(5):1405–1413PubMedGoogle Scholar
  182. Vantage Point (2015) wwwtheVantagePointcom, Search Technology, Inc, Norcross, GA
  183. Varani K, De Mattei M, Vincenzi F, Gessi S, Merighi S, Pellati A, Ongaro A, Caruso A, Cadossi R, Borea PA (2008) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr Cartil 16(3):292–304PubMedCrossRefGoogle Scholar
  184. Veronesi F, Cadossi M, Giavaresi G, Martini L, Setti S, Buda R, Giannini S, Fini M (2015) Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord 16:233PubMedPubMedCentralCrossRefGoogle Scholar
  185. Verschaeve L, Maes A (1998) Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat Res 410(2):141–165PubMedCrossRefGoogle Scholar
  186. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R (2008) Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Derm 158(6):1189–1196CrossRefGoogle Scholar
  187. Wang BH, He JL, Jin LF, Lu DQ, Zheng W, Lou JL, Deng HP (2005) Studying the synergistic damage effects induced by 18 Ghz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mut Res Fundam Mol Mech Mutagen 578(1–2):149–157Google Scholar
  188. Wang RJ, Hung YB, Wu PC, Fang JY, Tsai YH (2007) The effects of iontophoresis and electroporation on transdermal delivery of indomethacin evaluated in vitro and in vivo. J Food Drug Anal 15(2):126–132Google Scholar
  189. Wang X, Liu Y, Lei Y, Zhou D, Fu Y, Che Y, Xu R, Yu H, Hu X, Ma Y (2008) Extremely low-frequency electromagnetic field exposure during chronic morphine treatment strengthens downregulation of dopamine D2 receptors in rat dorsal hippocampus after morphine withdrawal. Neurosci Lett 433(3):178–182PubMedCrossRefGoogle Scholar
  190. Wang L-F, Li X, Gao Y-B, Wang S-M, Zhao L, Dong J, Yao B-W, Xu X-P, Chang G-M, Zhou H-M, Hu X-J, Peng R-Y (2015) Activation of VEGF/Flk-1-ERK pathway induced blood-brain barrier injury after microwave exposure. Mol Neurobiol 52(1):478–491PubMedCrossRefGoogle Scholar
  191. Watanabe Y, Nakagawa M, Miyakoshi Y (1997) Enhancement of lipid peroxidation in the liver of mice exposed to magnetic fields. Ind Health 35(2):285–290PubMedCrossRefGoogle Scholar
  192. Wei M, Guizzetti M, Yost M, Costa LG (2000) Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cells in vitro. Toxicol Appl Pharmacol 162(3):166–176PubMedCrossRefGoogle Scholar
  193. Whissell PD, Persinger MA (2007) Emerging synergisms between drugs and physiologically-patterned weak magnetic fields: implications for neuropharmacology and the human population in the twenty-first century. Curr Neuropharmacol 5(4):278–288PubMedPubMedCentralCrossRefGoogle Scholar
  194. Wolf R, Wolf D (2004) Increased incidence of cancer near a cell-phone transmitter station. Int J Cancer 1(2):123–128Google Scholar
  195. Yang L, Hao D, Wang M, Zeng Y, Wu S, Zeng Y (2012) Cellular neoplastic transformation induced by 916 MHz microwave radiation. Cell Mol Neurobiol 32(6):1039–1046PubMedCrossRefGoogle Scholar
  196. Yoon HE, Lee JS, Myung SH, Lee Y-S (2014) Increased gamma-H2AX by exposure to a 60-Hz magnetic fields combined with ionizing radiation, but not hydrogen peroxide, in non-tumorigenic human cell lines. Int J Radiat Biol 90(4):291–298PubMedCrossRefGoogle Scholar
  197. Zhang XY, Xue Y, Zhang Y (2006) Effects of 04 T rotating magnetic field exposure on density, strength, calcium and metabolism of rat thigh bones. Bioelectromagnetics 27(1):1–9PubMedCrossRefGoogle Scholar
  198. Zhao G, Lin X, Zhou M, Zhao J (2014) Relationship between exposure to extremely low-frequency electromagnetic fields and breast cancer risk: a meta-analysis. Eur J Gynaecol Oncol 35(3):264–269PubMedGoogle Scholar
  199. Zhao YL, Li YX, Ma HB, Li D, Li HL, Jiang R, Kan GH, Yang ZZ, Huang ZX (2015) The screening of genes sensitive to long-term, low-level microwave exposure and bioinformatic analysis of potential correlations to learning and memory. Biomed Environ Sci 28(8):558–570PubMedGoogle Scholar
  200. Zmyslony M, Palus J, Jajte J, Dziubaltowska E, Rajkowska E (2000) DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 Mt magnetic fields (Static Or 50 Hz). Mut Res Fundam Mol MechMutagen 453(1):89–96CrossRefGoogle Scholar
  201. Zwirska-Korczala K, Adamczyk-Sowa M, Polaniak R, Sowa P, Birkner E, Drzazga Z, Brzozowski T, Konturek SJ (2004) Influence of extremely-low-frequency magnetic field on antioxidative melatonin properties in AT478 murine squamous cell carcinoma culture. Biol Trace Elem Res 102(1–3):227–243PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.GainesvilleUSA
  3. 3.Institute for Defense AnalysesAlexandriaUSA

Personalised recommendations