Skip to main content

On the Inter-Ring Torsion Potential of 2,2′-Bithiophene: A Review of Open Problems and Current Proposals

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

Abstract

In this review, we describe the results of the most important theoretical studies of rotation around the bond connecting two thiophene rings in 2,2ʹ-bithiophene. The review first summarizes the earlier studies (since late 1960s), in which the most energetically favourable conformations of the molecule have been characterized for the first time. It then examines the one-dimensional potentials of internal rotation calculated using semiempirical, Hartree-Fock (HF), post-Hartree-Fock methods, and Kohn-Sham density functional theory (throughout the 1990s to the present), as well the torsion potential functions V(θ). Three directions in recent studies are highlighted: (i) the development and testing of force fields supplemented with new parameters of torsion interactions in thiophene-containing materials, (ii) the application of new hybrid, exchange-correlation and long-range corrected functionals for describing the inter-ring rotation and through-space (non-valent) intramolecular interactions which stabilize either cis (syn)- or trans (anti)-rotamer, and (iii) the torsion-dependent properties of bithiophene-containing systems. A concluding part gives a brief outlook on further studies in the field and offers a road map for novel research directions that are required to realize new breakthroughs in thiophene-based device performance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bäuerle P, Pfau F, Schlupp H, Würtner F, Gaudl K-U, Balparda Caro M, Fischer P (1993) J Chem Soc Perkin Trans II 2:489–494

    Article  Google Scholar 

  2. (a) Poelking C, Daoulas K, Troisi A, Andrienko D (2014) In: Ludwigs S (ed) P3HT revisited: from molecular scale to solar cell devices. Adv Polym Sci 265. Springer, Heidelberg, New York, Dordrecht, London, p 139. (b) Andrienko D (2015) In: Koch N (ed) Supramolecular materials for opto-electronics. RSC Smart Mater 12. The Royal Society of Chemistry, Cambridge, p 309

    Google Scholar 

  3. Ma J, Li S, Jiang Y (2002) Macromolecules 35(3):1109–1115

    Article  CAS  Google Scholar 

  4. Kishino S, Ueno Y, Ochiai K, Rikukawa M, Sanui K, Kobayashi T, Kunugita H, Ema K (1998) Phys Rev B 58(20):R13430(1–4)

    Article  Google Scholar 

  5. Marseglia EA, Grepioni F, Tedesco E, Braga D (2000) Mol Cryst Liq Cryst 348:137–151

    Article  CAS  Google Scholar 

  6. Lukevics E, Barbarella G, Arsenyan P, Belyakov S, Pudova O (2000) Chem Heterocycl Comp 36(6):630–662

    Article  CAS  Google Scholar 

  7. Gronowitz S (ed) (2009) Thiophene and its derivatives. John Wiley & Sons, New York Chichester Brisbane Toronto Singapore

    Google Scholar 

  8. Almenningen A, Bastiansen O, Svendsås P (1958) Acta Chem Scand 12(6):1671–1674

    Article  CAS  Google Scholar 

  9. Chaloner PA, Gunatunga SR, Hitchcock PB (1994) Acta Cryst Sec C Cryst Struct Commun 50(12):1941–1942

    Article  Google Scholar 

  10. Pelletier M, Brisse F (1994) Acta Cryst Sec C Cryst Struct Commun 50(12):1942–1945

    Article  Google Scholar 

  11. Samdal S, Samuelsen EJ, Volden HV (1993) Synth Met 59:259–265

    Article  CAS  Google Scholar 

  12. Takayanagi M, Gejo T, Hanazaki I (1994) J Phys Chem 98(49):12893–12898

    Article  CAS  Google Scholar 

  13. Khetrapal CL, Kunwar AC (1974) Mol Phys 28(2):441–446

    Article  CAS  Google Scholar 

  14. Ter Beek LC, Zimmerman DS, Burnell EE (1991) Mol Phys 74(5):1027–1035

    Article  Google Scholar 

  15. Aroney MJ, Lee HK, Le Fèvre RJW (1972) Aust J Chem 25:1561–1564

    Article  CAS  Google Scholar 

  16. (a) Veracini CA, Macciantelli D, Lunazzi L (1973) J Chem Soc Perkin Trans II 6:751–754. (b) Bucci P, Longeri M, Veracini CA, Lunazzi L (1974) J Am Chem Soc 96(5):1305–1309

    Google Scholar 

  17. Chadwick JE, Kohler BE (1994) J Phys Chem 98(14):3631–3637

    Article  CAS  Google Scholar 

  18. Concistré M, De Lorenyo L, De Luca G, Longeri M, Pileio G, Raos G (2005) J Phys Chem A 109(44):9953–9963

    Article  CAS  Google Scholar 

  19. Fedor AM, Allis DG, Korter TM (2009) Vib Spectrosc 49:124–132

    Article  CAS  Google Scholar 

  20. Kimura Y, Katano Y, Tanaka S, Yoshinari T, Itoh H, Kuriyama Y, Nagasaka S (2010) Synth Met 160:1131–1135

    Article  CAS  Google Scholar 

  21. Berardi R, Spinozzi F, Zannoni C (1994) Liq Cryst 16(3):381–397

    Article  CAS  Google Scholar 

  22. Cinacchi G (2010) J Phys Chem A 114(31):8114–8118

    Article  CAS  Google Scholar 

  23. Rubio M, Merchán M, Pou-Amérigo R, Ortí E (2003) ChemPhysChem 4:1308–1315

    Article  CAS  Google Scholar 

  24. Zhou J, Yu W, Bragg AE (2015) J Phys Chem Lett 6(17):3496–3502

    Article  CAS  Google Scholar 

  25. Andrzejak M, Witek HA (2011) Theor Chem Acc 129:161–172

    Article  CAS  Google Scholar 

  26. (a) Prlj A, Curchod BFE, Corminboeuf C (2015) Phys Chem Chem Phys 17:14719–14730. (b) Prlj A, Curchod BFE, Fabrizio A, Floryan L, Corminboeuf C (2015) Phys Chem Lett 6(1):13–21

    Google Scholar 

  27. Alparone A (2013) Adv Phys Chem 2013:1–8

    Article  CAS  Google Scholar 

  28. Breza M, Lukeš V, Vrábel I (2001) J Mol Struct (Theochem) 572:151–160

    Article  CAS  Google Scholar 

  29. (a) Gus’kova OA, Khalatur PG, Khokhlov AR (2009) Macromol Theory Simul 18(4–5):219–246. (b) Gus’kova OA, Mena-Osteritz E, Schillinger E, Khalatur PG, Bäuerle P, Khokhlov AR (2007) J Phys Chem C 111(19):7165–7174. (c) Gus’kova OA, Khalatur PG, Bäuerle P, Khokhlov AR (2008) Chem Phys Lett 461(1):64–70. (d) Guskova O, Schünemann C, Eichhorn K-J, Walzer K, Levichkova M, Grundmann S, Sommer J-U (2013) J Phys Chem C 117(33):17285–17293. (e) Gus’kova OA, Schillinger E, Khalatur PG, Bäuerle P, Khokhlov AR (2009) Polym Sci Ser A 51(4):430–445

    Google Scholar 

  30. Liu T, Cheung DL, Troisi A (2011) Phys Chem Chem Phys 13:21461–21470

    Article  CAS  Google Scholar 

  31. Alexiadis O, Mavrantzas VG (2013) Macromolecules 46(6):2450–2467

    Article  CAS  Google Scholar 

  32. Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15(2):162–182

    Article  CAS  Google Scholar 

  33. Barone V, Lelj F, Russo N, Toscano M (1986) J Chem Soc Perkin Trans II 6:907–910

    Article  Google Scholar 

  34. Marcon V, Raos G (2004) J Phys Chem B 108(46):18053–18064

    Article  CAS  Google Scholar 

  35. To TT, Adams S (2012) Nanosci Nanotechnol Lett 4(7):703–711

    Article  CAS  Google Scholar 

  36. Wachters AJH, Davies DW (1964) Tetrahedron 20:2841–2849

    Article  Google Scholar 

  37. Trinajstić N, Hinchliffe A (1968) Croat Chem Acta 40(3):163–169

    Google Scholar 

  38. Milun M, Trinajstić N (1973) Spectrosc Lett 6(6):329–346

    Article  Google Scholar 

  39. Skancke A (1970) Acta Chem Scand 24:1389–1397

    Article  CAS  Google Scholar 

  40. Galasso V (1972) Tetrahedron 28(16):4419–4429

    Article  CAS  Google Scholar 

  41. Abu-Eittah R, Al-Sageir F (1978) Int J Quantum Chem 13(5):565–577

    Article  CAS  Google Scholar 

  42. Abu-Eittah RH, Al-Sugeir FA (1985) Bull Chem Soc Jpn 58(7):2126–2132

    Article  CAS  Google Scholar 

  43. Brédas JL, Street GB, Thémans B, André JM (1985) J Chem Phys 83(3):1323–1329

    Article  Google Scholar 

  44. Cui CX, Kertesz M (1989) Phys Rev B 40(14):9661–9670

    Article  CAS  Google Scholar 

  45. Belletête M, Leclerc M, Durocher G (1994) J Phys Chem 98(88):9450–9456

    Article  Google Scholar 

  46. Di Césare N, Belletête M, Durocher G, Leclerc M (1997) Chem Phys Lett 275:533–539

    Article  Google Scholar 

  47. Belletête M, Di Césare N, Leclerc M, Durocher G (1997) J Mol Struct (Theochem) 391(1–2):85–99

    Article  Google Scholar 

  48. Raymond F, Di Césare N, Belletête M, Durocher G, Leclerc M (1998) Adv Mater 10(8):599–602

    Article  CAS  Google Scholar 

  49. Di Césare N, Belletête M, Leclerc M, Durocher G (1998) A conformational study of ethyl-substituted bithiophenes. Synth Met 94:291–298

    Article  Google Scholar 

  50. Di Césare N, Belletête M, Raymond F, Leclerc M, Durocher G (1998) J Phys Chem A 102(16):2700–2707

    Article  Google Scholar 

  51. Di Césare N, Belletête M, Leclerc M, Durocher G (1999) J Mol Struct (Theochem) 467:259–273

    Article  Google Scholar 

  52. Brédas JL, Heeger AJ (1990) Macromolecules 23(4):1150–1156

    Article  Google Scholar 

  53. Quattrocchi C, Lazzaroni R, Brédas JL (1993) Chem Phys Lett 208(1–2):120–124

    Article  CAS  Google Scholar 

  54. Viruela PM, Viruela R, Ortí E, Brédas J-L (1997) J Am Chem Soc 119(6):1360–1369

    Article  CAS  Google Scholar 

  55. López Navarrete JT, Tian B, Zerbi G (1990) Synth Met 38:299–312

    Article  Google Scholar 

  56. Ramírez FJ, Hernández V, López Navarrete JT (1994) J Comput Chem 15(4):405–423

    Article  Google Scholar 

  57. Hernandez V, López Navarrete JT (1994) J Chem Phys 101(2):1369–1377

    Article  CAS  Google Scholar 

  58. Hernández V, López Navarrete JT (1996) Synth Met 76:221–224

    Article  Google Scholar 

  59. Kofranek M, Kovář T, Lischka H, Karpfen A (1992) J Mol Struct (Theochem) 259:181–198

    Article  Google Scholar 

  60. Alemán C, Julia L (1996) J Phys Chem 100(5):1524–1529

    Article  Google Scholar 

  61. Karpfen A, Choi CH, Kertesz M (1997) J Phys Chem 101(40):7426–7433

    Article  CAS  Google Scholar 

  62. Alemán C, Domingo VM, Fajarí L, Jiliá L, Karpfen A (1998) J Org Chem 63(4):1041–1048

    Article  Google Scholar 

  63. Jones D, Guerra M, Favaretto L, Modelli A, Fabrizio M, Distefano G (1990) J Phys Chem 94(15):5761–5766

    Article  CAS  Google Scholar 

  64. dos Santos DA, Galvão DS, Laks B, dos Santos MC (1991) Chem Phys Lett 184(5–6):579–583

    Google Scholar 

  65. dos Santos DA, Galvão DS, Laks B, dos Santos MC (1992) Synth Met 51:203–209

    Article  Google Scholar 

  66. Distefano G, Dal Colle M, Jones D, Zambianchi M, Favaretto L, Modelli A (1993) J Phys Chem 97(14):3504–3509

    Article  CAS  Google Scholar 

  67. Padilla-Campos L, Toro-Labbé A (1995) J Mol Struct (Theochem) 330:223–229

    Article  CAS  Google Scholar 

  68. Benincori T, Brenna E, Sannicolo F, Trimarco L, Moro G, Pitea D, Pilati T, Zerbi G, Zotti G (1995) J Chem Soc Chem Commun 8:881–882

    Article  Google Scholar 

  69. Porter TL, Minore D, Zhang D (1995) J Phys Chem 99(35):13213–13216

    Article  CAS  Google Scholar 

  70. Ortí E, Viruela PM, Sánchez-Marín J, Tomás F (1995) J Phys Chem 99(14):4955–4963

    Article  Google Scholar 

  71. Kiliç GB, Toppare L, Yurtsever E (1996) Synt Met 78:19–25

    Article  Google Scholar 

  72. Forni A, Sironi M, Raimondi M, Cooper DL, Gerratt J (1997) J Phys Chem A 101(24):4437–4443

    Article  CAS  Google Scholar 

  73. Bongini A, Bottoni A (1999) J Phys Chem A 103(34):6800–6804

    Article  CAS  Google Scholar 

  74. De Oliveira MA, Duarte HA, Pernaut J-M, De Almeida WB (2000) J Phys Chem A 104(35):8256–8262

    Article  CAS  Google Scholar 

  75. Duarte HA, dos Santos HF, Rocha WR, De Almeida WB (2000) J Chem Phys 113(10):4206–4215

    Article  CAS  Google Scholar 

  76. Grozema FC, van Duijnen PTh, Berlin YA, Ratner MA, Siebbeles LDA (2002) J Phys Chem B 106(32):7791–7795

    Article  CAS  Google Scholar 

  77. Zhao J (2002) Synth Met 128:261–266

    Article  CAS  Google Scholar 

  78. Lukeš V, Breza M, Biskupič S (2002) J Mol Struct (Theochem) 618:93–100

    Article  Google Scholar 

  79. Diaz-Quijada GA, Weinberg N, Holdcroft S, Pinto BM (2002) J Phys Chem A 106(7):1266–1276

    Article  CAS  Google Scholar 

  80. Diaz-Quijada GA, Weinberg N, Holdcroft S, Pinto BM (2002) J Phys Chem A 106(7):1277–1285

    Article  CAS  Google Scholar 

  81. van Eijck L, Johnson MR, Kearley GJ (2003) J Phys Chem A 107(42):8980–8984

    Article  CAS  Google Scholar 

  82. Raos G, Famulari A, Marcon V (2003) Chem Phys Lett 379:364–372

    Article  CAS  Google Scholar 

  83. Raos G, Famulari A, Meille SV, Gallazzi MC, Allegra G (2004) J Phys Chem A 108(4):691–698

    Article  CAS  Google Scholar 

  84. Marcon V, Raos G, Allegra G (2004) Macromol Theory Simul 13:497–505

    Article  CAS  Google Scholar 

  85. Sancho-García JC, Cornil J (2004) J Chem Phys 121(7):3096–3101

    Article  CAS  Google Scholar 

  86. Zhang G, Pei Y, Ma J, Yin K, Chen C-L (2004) J Phys Chem B 108(22):6988–6995

    Article  CAS  Google Scholar 

  87. Gombojav B, Yoshinari T, Itoh H, Nagasaka S-i, Kuriyama Y, Koyama K (2004) J Phys Soc Jpn 73(11):3166–3170

    Article  CAS  Google Scholar 

  88. Sancho-García JC (2005) J Phys Chem A 109(15):3470–3475

    Article  CAS  Google Scholar 

  89. Siebbeles LDA, Grozema FC, de Haas MP (2005) Warman JM 72:85–91

    CAS  Google Scholar 

  90. Fabiano E, Della Sala F (2006) Chem Phys Lett 418:496–501

    Article  CAS  Google Scholar 

  91. Westenhoff S, Beenken WJD, Yartsev A, Greenham NC (2006) J Chem Phys 125:154903(1–7)

    Article  CAS  Google Scholar 

  92. Zhao J, Li P, Li Y, Huang Z (2007) J Mol Struct (Theochem) 808:125–134

    Article  CAS  Google Scholar 

  93. Zhang G, Ma J, Wen J (2007) J Phys Chem B 111(40):11670–11679

    Article  CAS  Google Scholar 

  94. Widge A, Matsuoka Y, Kurnikova M (2008) J Mol Graph Model 27(1):34–44

    Article  CAS  Google Scholar 

  95. Vukmirović N, Wang L-W (2009) J Phys Chem B 113(2):409–415

    Article  CAS  Google Scholar 

  96. Darling SB, Sternberg M (2009) J Phys Chem B 113(18):6215–6218

    Article  CAS  Google Scholar 

  97. Macchi G, Medina BM, Zambianchi M, Tubino R, Cornil J, Barbarella G, Gierschner J, Meinardi F (2009) Phys Chem Chem Phys 11:984–990

    Article  CAS  Google Scholar 

  98. Cheung DL, McMahon DP, Troisi A (2009) J Phys Chem B 113(28):9393–9401

    Article  CAS  Google Scholar 

  99. Bouzzinea SM, Hamidi M, Bouachrine M (2009) J Appl Chem Res 11:40–46

    Google Scholar 

  100. (a) Arosio P, Moreno M, Famulari A, Raos G, Catellani M, Meille SV (2009) Chem Mater 21(1):78–87. (b) Moreno M, Casalegno M, Raos G, Meille SV, Po R (2010) J Phys Chem B 114(4): 1591–1602

    Google Scholar 

  101. Sánchez-Sanz G, Alkorta I, Elguero (2011) J Comput Theor Chem 974:37–42

    Article  CAS  Google Scholar 

  102. Pizzirusso A, Savini M, Muccioli L, Zannoni C (2011) J Mater Chem 21:125–133

    Article  CAS  Google Scholar 

  103. Tang S, Zhang J (2011) Int J Quantum Chem 111(9):2089–2098

    Article  CAS  Google Scholar 

  104. Bhatta RS, Yimer YY, Tsige M, Perry DS (2012) Comput Theor Chem 995:36–42

    Article  CAS  Google Scholar 

  105. Vujanovich EC, Bloom JWG, Wheeler SE (2012) J Phys Chem A 116:2997–3003

    Article  CAS  Google Scholar 

  106. DuBay KH, Hall ML, Hughes TF, Wu C, Reichman DR, Friesner RA (2012) J Chem Theory Comput 8(11):4556–4569

    Article  CAS  Google Scholar 

  107. Łużny W, Piwowarczyk K (2013) Synth Met 179:1–9

    Article  CAS  Google Scholar 

  108. Bhatta RS, Perry DS (2013) Comput Theor Chem 1008:90–95

    Article  CAS  Google Scholar 

  109. Bhatta RS, Yimer YY, Perry DS, Tsige M (2013) J Phys Chem B 117(34):10035–10045

    Article  CAS  Google Scholar 

  110. Bjorgaard JA, Köse ME (2013) J Phys Chem A 117(18):3869–3876

    Article  CAS  Google Scholar 

  111. Baggioli A, Meille SV, Raos G, Po R, Brinkmann M, Famulari A (2013) Int J Quantum Chem 113(8):2154–2162

    Article  CAS  Google Scholar 

  112. Baggioli A, Famulari A (2014) Phys Chem Chem Phys 16(9):3983–3994

    Article  CAS  Google Scholar 

  113. Bloom JW, Wheeler SE (2014) J Chem Theory Comput 10(9):3647–3655

    Article  CAS  Google Scholar 

  114. Lin T-J, Lin S-T (2015) Phys Chem Chem Phys 17(6):4127–4136

    Article  CAS  Google Scholar 

  115. Böckmann M, Schemme T, de Jong DH, Denz C, Heuer A, Doltsinis NL (2015) Phys Chem Chem Phys 17(43):28616–28625

    Article  CAS  Google Scholar 

  116. Vikramaditya T, Saisudhakar M, Sumithra K (2015) J Mol Struct 1081:114–123

    Article  CAS  Google Scholar 

  117. Sitkiewicz SP, Mikołajczyk MM, Toman P, Zaleśny R, Bartkowiak W (2013) Chem Phys Lett 566:67–70

    Article  CAS  Google Scholar 

  118. Verma P, Perera A, Morales JA (2016) Mol Phys 114(3–4):547–561

    CAS  Google Scholar 

  119. Kölle P, Schnappinger T, de Vivie-Riedle R (2016) Phys Chem Chem Phys 18:7903–7915

    Article  CAS  Google Scholar 

  120. Donohoo-Vallett PJ, Bragg AE (2015) J Phys Chem B 119(8):3583–3594

    Article  CAS  Google Scholar 

  121. Kim J, Kwon O-P, Jazbinsek M, Park YC, Lee YS (2015) J Phys Chem C 119(22):1258–12607

    Google Scholar 

  122. Andrzejak M, Orzeł Ł (2014) Phys Chem Chem Phys 16(12):5605–5612

    Article  CAS  Google Scholar 

  123. Improta R, Ferrer FJ, Stendardo E, Santoro F (2014) ChemPhysChem 15(15):3320–3333

    Article  CAS  Google Scholar 

  124. Einkauf JD, Mathivathanan L, de Lill DT (2016) J Mol Struct 1104:33–39

    Article  CAS  Google Scholar 

  125. Oftadeh M, Moshfegh M, Abdallah HH (2016) Phys Chem Res 4(1):35–46

    Google Scholar 

  126. Bhatta RS, Tsige M (2014) Polymer 55(11):2667–2672

    Article  CAS  Google Scholar 

  127. Claveau A (2015) Synthesis and investigation of photochromic torsional switches [Master’s thesis]. [EPFL: Switzerland] École Polytechnique Fédérale de Lausanne

    Google Scholar 

  128. Casado J, Ortiz RP, López Navarrete JT (2012) Chem Soc Rev 41(17):5672–5686

    Article  CAS  Google Scholar 

  129. Doval DA, Dal Molin M, Ward S, Fin A, Sakai N, Matile S (2014) Chem Sci 5(7):2819–2825

    Article  CAS  Google Scholar 

  130. Besar K, Ardona HA, Tovar JD, Katz HE (2015) ACS Nano 9(12):12401–12409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Prof. Dr. Jens-Uwe Sommer and PD Dr. Marina Grenzer (Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden) for many useful discussions. The funding by ESF Young Investigators Group “CoSiMaComputer Simulations for Materials Design” at DCMS, Technische Universität Dresden (http://dcms.tu-dresden.de/de/), Project “Boosting functional design of ambipolar organic semiconductors for advanced flexible electronics” is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Guskova .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guskova, O.A. (2017). On the Inter-Ring Torsion Potential of 2,2′-Bithiophene: A Review of Open Problems and Current Proposals. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_13

Download citation

Publish with us

Policies and ethics