Advertisement

On New Fractional Inverse Matrix Projective Synchronization Schemes

  • Adel Ouannas
  • Ahmad Taher Azar
  • Toufik Ziar
  • Sundarapandian Vaidyanathan
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 688)

Abstract

In this study, the problem of inverse matrix projective synchronization (IMPS) between different dimensional fractional order chaotic systems is investigated. Based on fractional order Lyapunov approach and stability theory of fractional order linear systems, new complex schemes are proposed to achieve inverse matrix projective synchronization (IMPS) between n-dimension and m-dimension fractional order chaotic systems. To validate the theoretical results and to verify the effectiveness of the proposed schemes, numerical applications and computer simulations are used.

Keywords

Fractional chaos Inverse matrix projective synchronization Fractional-order Lyapunov approach Different dimensional systems 

References

  1. 1.
    Jumarie, G. (1992). A Fokker-Planck equation of fractional order with respect to time. Journal of Mathematical Physics, 33, 3536–3541.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Metzler, R., Glockle, W. G., & Nonnenmacher, T. F. (1994). Fractional model equation for anomalous diffusion. Physica A, 211, 13–24.CrossRefGoogle Scholar
  3. 3.
    Mainardi, F. (1997). Fractional calculus: some basic problems in continuum and statistical mechanics. In A. Carpinteri & F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics. Springer.Google Scholar
  4. 4.
    Hilfer, R. (2000). Applications of fractional calculus in physics. World Scientific.Google Scholar
  5. 5.
    Parada, F. J. V., Tapia, J. A. O., & Ramirez, J. A. (2007). Effective medium equations for fractional Fick’s law in porous media. Physica A, 373, 339–353.CrossRefGoogle Scholar
  6. 6.
    Koeller, R. C. (1984). Application of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 51, 299–307.Google Scholar
  7. 7.
    Axtell, M., & Bise, E. M. (1990). Fractional calculus applications in control systems. In Proceedings of the IEEE National Aerospace and Electronics Conference New York (pp. 563–566).Google Scholar
  8. 8.
    Dorčák, L. (1994). Numerical models for the simulation of the fractional-order control systems, UEF-04-94., Institute of Experimental Physics Košice, Slovakia: The Academy of Sciences.Google Scholar
  9. 9.
    Pires, E. J. S., Machado, J. A. T., & de Moura, P. B. (2003). Fractional order dynamics in a GA planner. Signal Process, 83, 2377–2386.CrossRefMATHGoogle Scholar
  10. 10.
    Magin, R. L. (2006). Fractional calculus in bioengineering. Begell House Publishers.Google Scholar
  11. 11.
    Tseng, C. C. (2007). Design of FIR and IIR fractional order Simpson digital integrators. Signal Process, 87, 1045–1057.Google Scholar
  12. 12.
    da Graca, M. M., Duarte, F. B. M., & Machado, J. A. T. (2008). Fractional dynamics in the trajectory control of redundant manipulators. Communications in Nonlinear Science and Numerical Simulation, 13, 1836–1844.CrossRefGoogle Scholar
  13. 13.
    Hedrih, K. S., & Stanojevic, V. N. (2010). A model of gear transmission: fractional order system dynamics. Mathematical Problems in Engineering, 1–23.Google Scholar
  14. 14.
    Nakagava, N., & Sorimachi, K. (1992). Basic characteristic of a fractance device. IEICE Transactions on Fundamentals of Electronics, 75, 1814–1818.Google Scholar
  15. 15.
    Westerlund, S. (2002). Dead Matter Has Memory!. Causal Consulting.Google Scholar
  16. 16.
    Oldham, K. B., & Spanier, J. (1974). The fractional calculus. Academic.Google Scholar
  17. 17.
    Miller, K. S., & Ross, B. (1993). An Introduction to the fractional calculus and fractional differential equations. Wiley.Google Scholar
  18. 18.
    Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos, Solitons & Fractals, 38, 140–147.Google Scholar
  19. 19.
    West, B. J., Bologna, M., & Grigolini, P. (2002). Physics of fractal operators. Springer.Google Scholar
  20. 20.
    Zaslavsky, G.M. (2005). Hamiltonian chaos and fractional dynamics. Oxford University Press.Google Scholar
  21. 21.
    Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design, studies in computational intelligence (vol. 581). Germany: Springer.Google Scholar
  22. 22.
    Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer. ISBN 978-3-319-30338-3.Google Scholar
  23. 23.
    Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in Computational Intelligence (vol. 575). Germany: Springer. ISBN 978-3-319-11016-5.Google Scholar
  24. 24.
    Azar, A. T., & Vaidyanathan, S. (2015). Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series, IGI Global, USA. ISBN 9781466672482.Google Scholar
  25. 25.
    Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in Fuzziness and Soft Computing (vol. 319). Germany: Springer. ISBN 978-3-319-12882-5.Google Scholar
  26. 26.
    Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in Computational Intelligence (vol. 576). Germany: Springer. ISBN 978-3-319-11172-8.Google Scholar
  27. 27.
    Filali, R. L., Benrejeb, M., & Borne, P. (2014). On observer-based secure communication design using discrete-time hyperchaotic systems. Communications in Nonlinear Science and Numerical Simulation, 19, 1424–1432.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sheikhan, M., Shahnazi, M., & Garoucy, S. (2013). Hyperchaos synchronization using PSO-optimized RBF-based controllers to improve security of communication systems. Neural Computing & Applications, 22(5), 835–846.Google Scholar
  29. 29.
    Fernando, J. (2011). Applying the theory of chaos and a complex model of health to establish relations among financial indicators. Procedia Computer Science, 3, 982–986.CrossRefGoogle Scholar
  30. 30.
    Zsolt, B. (1997). Chaos theory and power spectrum analysis in computerized cardiotocography. European Journal of Obstetrics & Gynecology and Reproductive Biology, 71(2), 163–168.Google Scholar
  31. 31.
    Chen, G., & Dong, X. (1989). From chaos to order. World Scientific.Google Scholar
  32. 32.
    Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controling chaos. Physical Review Letters, 64, 1196–1199.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Boccalettis, C., Grebogi, Y. C., LAI, M. H., & Maza, D. (2000). The control of chaos: theory and application. Physics Reports, 329, 103–197.Google Scholar
  34. 34.
    Yamada, T., & Fujisaka, H. (1983). Stability theory of synchroized motion in coupled-oscillator systems. Progress of Theoretical Physics, 70, 1240–1248.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64, 821–827.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Carroll, T. L., & Pecora, L. M. (1991). Synchronizing a chaotic systems. IEEE Transactions on Circuits and Systems, 38, 453–456.CrossRefGoogle Scholar
  37. 37.
    Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization an universal concept in nonlinear sciences. Cambridge university press.Google Scholar
  38. 38.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366, 1–101.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Aziz-Alaoui,  M. A. (2006). Synchronization of chaos. Encyclopedia of Mathematical Physics, 5, 213–226.Google Scholar
  40. 40.
    Luo, A. (2009). A theory for synchronization of dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 14, 1901–1951.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.Google Scholar
  42. 42.
    Vaidyanathan, S., Azar, A. T., Rajagopal, K., & Alexander, P. (2015). Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control, (2015). International Journal of Modelling. Identification and Control (IJMIC), 23(3), 267–277.Google Scholar
  43. 43.
    Vaidyanathan, S., & Azar, A. T. (2016). Takagi-sugeno fuzzy logic controller for liu-chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.CrossRefGoogle Scholar
  44. 44.
    Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016). A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics. doi: 10.1007/s13042-016-0566-3.
  45. 45.
    Vaidyanathan, S., Azar, A. T. (2015). Anti-Synchronization of identical chaotic systems using sliding mode control and an application to vaidyanathan-madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence book Series (vol. 576, pp. 527–547), GmbH Berlin/Heidelberg: Springer. doi: 10.1007/978-3-319-11173-5_19.
  46. 46.
    Vaidyanathan, S., & Azar, A. T. (2015). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu, (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence book Series, (vol. 576, pp. 549–569), GmbH Berlin/Heidelberg: Springer. doi: 10.1007/978-3-319-11173-5_20.
  47. 47.
    Vaidyanathan, S., & Azar, A. T. (2015). analysis, control and synchronization of a Nine-Term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos Modeling and Control Systems Design, Studies in Computational Intelligence (vol. 581, pp. 3–17), GmbH Berlin/Heidelberg: Springer. doi: 10.1007/978-3-319-13132-0_1.
  48. 48.
    Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design, Studies in Computational Intelligence (vol. 581, pp. 19–38), GmbH Berlin/Heidelberg: Springer. dpoi: 10.1007/978-3-319-13132-0_2.
  49. 49.
    Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015). Backstepping controller design for the global chaos synchronization of sprott’s jerk systems. In A. T. Azar & S. Vaidyanathan (Eds.), chaos modeling and control systems design, Studies in Computational Intelligence, (vol. 581, pp. 39–58), GmbH Berlin/Heidelberg: Springer. doi: 10.1007/978-3-319-13132-0_3.
  50. 50.
    Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.Google Scholar
  51. 51.
    Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337), Germany: Springer.Google Scholar
  52. 52.
    Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an Eight-Term 3-D novel chaotic system with three quadratic nonlinearities. Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.Google Scholar
  53. 53.
    Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.Google Scholar
  54. 54.
    Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.Google Scholar
  55. 55.
    Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of halvorsen circulant chaotic systems. Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.Google Scholar
  56. 56.
    Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.Google Scholar
  57. 57.
    Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic Four-Wing system via adaptive control method. Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing. (vol. 337). Germany: Springer.Google Scholar
  58. 58.
    Hartley, T., Lorenzo, C., & Qammer, H. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 42, 485–490.Google Scholar
  59. 59.
    Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91, 034101.CrossRefGoogle Scholar
  60. 60.
    Li, C., & Chen, G. (2004). Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals, 22, 549–554.CrossRefMATHGoogle Scholar
  61. 61.
    Lu, J. G., & Chen, G. (2006). A note on the fractional-order Chen system. Chaos Solitons Fractals, 27, 685–688.CrossRefMATHGoogle Scholar
  62. 62.
    Li, C., & Chen, G. (2004). Chaos and hyperchaos in fractional order R össler equations. Physica A, 341, 55–61.MathSciNetCrossRefGoogle Scholar
  63. 63.
    Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals, 26, 1125–1133.CrossRefMATHGoogle Scholar
  64. 64.
    Deng, W. H., & Li, C. P. (2005). Chaos synchronization of the fractional Lü system. Physica A, 353, 61–72.CrossRefGoogle Scholar
  65. 65.
    Guo, L. J. (2005). Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems. Chinese Physics, 14, 1517–1521.CrossRefGoogle Scholar
  66. 66.
    Ge, Z. M., & Ou, C. Y. (2007). Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals, 34, 262–291.CrossRefMATHGoogle Scholar
  67. 67.
    Chen, W. C. (2008). Nonlinear dynamic and chaos in a fractional-order financial system. Chaos Solitons Fractals, 36, 1305–1314.CrossRefGoogle Scholar
  68. 68.
    Sheu, L. J., Chen, H. K., Chen, J. H., Tam, L. M., Chen, W. C., Lin, K. T., et al. (2008). Chaos in the Newton-Leipnik system with fractional order. Chaos Solitons Fractals, 36, 98–103.MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. A. (2007). Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applications, 325, 542–553.MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Gejji, V. D., & Bhalekar, S. (2010). Chaos in fractional order Liu system. Computers & Mathematics with Applications, 59, 1117–1127.Google Scholar
  71. 71.
    Li, C., & Zhou, T. (2005). Synchronization in fractional-order differential systems. Physica D, 212, 111–125.MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Wang, J., Xiong, X., & Zhang, Y. (2006). Extending synchronization scheme to chaotic fractional-order Chen systems. Physica A, 370, 279–285.CrossRefGoogle Scholar
  73. 73.
    Li, C. P., Deng, W. H., & Xu, D. (2006). Chaos synchronization of the Chua system with a fractional order. Physica A, 360, 171–185.MathSciNetCrossRefGoogle Scholar
  74. 74.
    Peng, G. (2007). Synchronization of fractional order chaotic systems. Physics Letters A, 363, 426–432.MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Yan, J., & Li, C. (2007). On chaos synchronization of fractional differential equations. Chaos Solitons Fractals, 32, 725–735.MathSciNetCrossRefMATHGoogle Scholar
  76. 76.
    Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos Solitons Fractals, 32, 751–757.CrossRefGoogle Scholar
  77. 77.
    Zhou, S., Li, H., Zhu, Z., & Li, C. (2008). Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals, 36, 973–984.MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    Zhu, H., Zhou, S., & Zhang, J. (2009). Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals, 39, 1595–1603.CrossRefMATHGoogle Scholar
  79. 79.
    Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Analysis: Real World Applications, 13(2012), 1441–1450.MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Liang, H., Wang, Z., Yue, Z., & Lu, R. (2012). Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika, 48, 190–205.MathSciNetMATHGoogle Scholar
  81. 81.
    Muthukumar, P., & Balasubramaniam, P. (2013). Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynamics, 1169–1181.Google Scholar
  82. 82.
    Chen, L., Wu, R., He, Y., & Chai, Y. (2015). Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dynamics, 80, 51–58.MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Liu, L., Ding, W., Liu, C., Ji, H., & Cao, C. (2014). Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dynamics, 76, 2059–2071.MathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Zhang, L., & Yan, Y. (2014). Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dynamics, 76, 1761–1767.Google Scholar
  85. 85.
    Srivastava, M., Ansari, S. P., Agrawal, S. K., Das, S., & Leung, A. Y. T. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76, 905–914.MathSciNetCrossRefGoogle Scholar
  86. 86.
    Agrawal, S. K., & Das, S. (2013). A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 73, 907–919.Google Scholar
  87. 87.
    Zhou, P., & Bai, R. (2015). The adaptive synchronization of fractional-order chaotic system with fractional-order 1 \(<\) q \(<\) 2 via linear parameter update law. Nonlinear Dynamics, 80, 753–765.Google Scholar
  88. 88.
    Odibat, Z. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.MathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    Yuan, W. X., & Mei, S. J. (2009). Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 14, 3351–3357.CrossRefMATHGoogle Scholar
  90. 90.
    Odibat, Z. M., Corson, N., Aziz-Alaoui, M. A., & Bertelle, C. (2010). Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20, 81–97.MathSciNetCrossRefMATHGoogle Scholar
  91. 91.
    Chen, X. R., & Liu, C. X. (2012). Chaos synchronization of fractional order unified chaotic system via nonlinear control. International Journal of Modern Physics B, 25, 407–415.CrossRefMATHGoogle Scholar
  92. 92.
    Cafagna, D., & Grassi, G. (2012). Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems. Nonlinear Dynamics, 68, 117–128.MathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    Peng, G., & Jiang, Y. (2008). Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Physics Letters A, 372, 3963–3970.MathSciNetCrossRefMATHGoogle Scholar
  94. 94.
    Odibat, Z. M. (2012). A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Analysis: Real World Applications, 13, 779–789.MathSciNetCrossRefMATHGoogle Scholar
  95. 95.
    Chen, F., Xia, L., & Li, C. G. (2012). Wavelet phase synchronization of fractional-order chaotic systems. Chinese Physics Letters, 29, 6–070501.Google Scholar
  96. 96.
    Razminiaa, A., & Baleanu, D. (2013). Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 23, 873–879.CrossRefGoogle Scholar
  97. 97.
    Pan, L., Zhou, W., Fang, J., & Li, D. (2010). Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 15, 3754–3762.MathSciNetCrossRefMATHGoogle Scholar
  98. 98.
    Liu, F. C., Li, J. Y., & Zang, X. F. (2011). Anti-synchronization of different hyperchaotic systems based on adaptive active control and fractional sliding mode control. Acta Physica Sinica, 60, 030504.Google Scholar
  99. 99.
    Al-sawalha, M. M., Alomari, A. K., Goh, S. M., & Nooran, M. S. M. (2011). Active anti-synchronization of two identical and different fractional-order chaotic systems. International Journal of Nonlinear Science, 11, 267–274.MathSciNetMATHGoogle Scholar
  100. 100.
    Li, C. G. (2006). Projective synchronization in fractional order chaotic systems and its control. Progress of Theoretical Physics, 115, 661–666.CrossRefGoogle Scholar
  101. 101.
    Shao, S. Q., Gao, X., & Liu, X. W. (2007). Projective synchronization in coupled fractional order chaotic Rössler system and its control. Chinese Physics, 16, 2612–2615.CrossRefGoogle Scholar
  102. 102.
    Wang, X. Y., & He, Y. J. (2008). Projective synchronization of fractional order chaotic system based on linear separation. Physics Letters A, 372, 435–441.CrossRefMATHGoogle Scholar
  103. 103.
    Si, G., Sun, Z., Zhang, Y., & Chen, W. (2012). Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Analysis: Real World Applications, 13, 1761–1771.MathSciNetCrossRefMATHGoogle Scholar
  104. 104.
    Agrawal, S. K., & Das, S. (2014). Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique. Mathematical Methods in the Applied Sciences, 37, 2164–2176.Google Scholar
  105. 105.
    Chang, C. M., & Chen, H. K. (2010). Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems. Nonlinear Dynamics, 62, 851–858.MathSciNetCrossRefMATHGoogle Scholar
  106. 106.
    Wang, S., Yu, Y. G., & Diao, M. (2010). Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Physica A, 389, 4981–4988.CrossRefGoogle Scholar
  107. 107.
    Zhou, P., & Zhu, W. (2011). Function projective synchronization for fractional-order chaotic systems. Nonlinear Analysis: Real World Applications, 12, 811–816.MathSciNetCrossRefMATHGoogle Scholar
  108. 108.
    Zhou, P., & Cao, Y. X. (2010). Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems. Chinese Physics B, 19, 100507.CrossRefGoogle Scholar
  109. 109.
    Xi, H., Li, Y., & Huang, X. (2015). Adaptive function projective combination synchronization of three different fractional-order chaotic systems. Optik, 126, 5346–5349.CrossRefGoogle Scholar
  110. 110.
    Peng, G. J., Jiang, Y. L., & Chen, F. (2008). Generalized projective synchronization of fractional order chaotic systems. Physica A, 387, 3738–3746.CrossRefGoogle Scholar
  111. 111.
    Shao, S. Q. (2009). Controlling general projective synchronization of fractional order Rössler systems. Chaos Solitons Fractals, 39, 1572–1577.CrossRefMATHGoogle Scholar
  112. 112.
    Wu, X. J., & Lu, Y. (2009). Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dynamics, 57, 25–35.CrossRefMATHGoogle Scholar
  113. 113.
    Zhou, P., Kuang, F., & Cheng, Y. M. (2010). Generalized projective synchronization for fractional order chaotic systems. The Chinese Journal of Physics, 48, 49–56.MathSciNetGoogle Scholar
  114. 114.
    Deng, W. H. (2007). Generalized synchronization in fractional order systems. Physical Review E, 75, 056201.CrossRefGoogle Scholar
  115. 115.
    Zhou, P., Cheng, X. F., & Zhang, N. Y. (2008). Generalized synchronization between different fractional-order chaotic systems. Communications in Theoretical Physics, 50, 931–934.CrossRefGoogle Scholar
  116. 116.
    Zhang, X. D., Zhao, P. D., & Li, A. H. (2010). Construction of a new fractional chaotic system and generalized synchronization. Communications in Theoretical Physics, 53, 1105–1110.CrossRefMATHGoogle Scholar
  117. 117.
    Jun, W. M., & Yuan, W. X. (2011). Generalized synchronization of fractional order chaotic systems. International Journal of Modern Physics B, 25, 1283–1292.CrossRefMATHGoogle Scholar
  118. 118.
    Wu, X. J., Lai, D. R., & Lu, H. T. (2012). Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dynamics, 69, 667–683.MathSciNetCrossRefMATHGoogle Scholar
  119. 119.
    Xiao, W., Fu, J., Liu, Z., & Wan, W. (2012). Generalized synchronization of typical fractional order chaos system. Journal of Computer, 7, 1519–1526.Google Scholar
  120. 120.
    Martínez-Guerra, R., & Mata-Machuca, J. L. (2014). Fractional generalized synchronization in a class of nonlinear fractional order systems. Nonlinear Dynamics, 77, 1237–1244.MathSciNetCrossRefMATHGoogle Scholar
  121. 121.
    Yi, C., Liping, C., Ranchao, W., & Juan, D. (2013). Q-S synchronization of the fractional-order unified system. Pramana, 80, 449–461.CrossRefGoogle Scholar
  122. 122.
    Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Exponential synchronization for fractional-order chaotic systems with mixed uncertainties. Complexity, 21, 114–125.MathSciNetCrossRefGoogle Scholar
  123. 123.
    Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69, 247–261.MathSciNetCrossRefMATHGoogle Scholar
  124. 124.
    Li, D., Zhang, X. P., Hu, Y. T., & Yang, Y. Y. (2015). Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing, 167, 165–171.CrossRefGoogle Scholar
  125. 125.
    Xi, H., Yu, S., Zhang, R., & Xu, L. (2014). Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems. Optik, 125, 2036–2040.CrossRefGoogle Scholar
  126. 126.
    Ouannas, A., Al-sawalha, M. M., & Ziar, T. (2016). Fractional chaos synchronization schemes for different dimensional systems with non-Identical fractional-orders via two scaling matrices. Optik, 127, 8410–8418.CrossRefGoogle Scholar
  127. 127.
    Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 1–9.Google Scholar
  128. 128.
    Hu, M., Xu, Z., Zhang, R., & Hu, A. (2007). Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Physics Letters A, 365, 315–327.CrossRefGoogle Scholar
  129. 129.
    Zhang, Q., & Lu, J. (2008). Full state hybrid lag projective synchronization in chaotic (hyperchaotic) systems. Physics Letters A, 372, 1416–1421.MathSciNetCrossRefMATHGoogle Scholar
  130. 130.
    Hu, M., Xu, Z., Zhang, R., & Hu, A. (2007). Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyperchaotic) systems. Physics Letters A, 361, 231–237.MathSciNetCrossRefMATHGoogle Scholar
  131. 131.
    Tang, Y., Fang, J. A., & Chen, L. (2010). Lag full state hybrid projective synchronization in different fractional-order chaotic systems. International Journal of Modern Physics B, 24, 6129–61411.MathSciNetCrossRefMATHGoogle Scholar
  132. 132.
    Feng, H., Yang, Y., & Yang, S. P. (2013). A new method for full state hybrid projective synchronization of different fractional order chaotic systems. Applied Mechanics and Materials, 385–38, 919–922.CrossRefGoogle Scholar
  133. 133.
    Razminia, A. (2013). Full state hybrid projective synchronization of a novel incommensurate fractional order hyperchaotic system using adaptive mechanism. Indian Journal of Physics, 87, 161–167.CrossRefGoogle Scholar
  134. 134.
    Zhang, L., & Liu, T. (2016). Full state hybrid projective synchronization of variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters. The Journal of Nonlinear Science and Applications, 9, 1064–1076.MathSciNetMATHGoogle Scholar
  135. 135.
    Manieri, R., & Rehacek, J. (1999). Projective synchronization in three-dimensional chaotic systems. Physical Review Letters, 82, 3042–3045.CrossRefGoogle Scholar
  136. 136.
    Hu, M., Xu, Z., Zhang, R., & Hu, A. (2008). Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems. Communications in Nonlinear Science and Numerical Simulation, 13, 456–464.MathSciNetCrossRefMATHGoogle Scholar
  137. 137.
    Hu, M., Xu, Z., Zhang, R., & Hu, A. (2008). Full state hybrid projective synchronization of a general class of chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 13, 782–789.MathSciNetCrossRefMATHGoogle Scholar
  138. 138.
    Grassi, G. (2012). Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal. Chinese Physics B, 21, 060504.CrossRefGoogle Scholar
  139. 139.
    Ouannas, A., & Abu-Saris, R. (2016). On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems. Journal of Control Science and Engineering, 1–7.Google Scholar
  140. 140.
    Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri & F. Mainardi (Eds.), The book Fractals and fractional calculus, New York.Google Scholar
  141. 141.
    Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent-II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.CrossRefGoogle Scholar
  142. 142.
    Samko, S. G., Klibas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives: theory and applications. Gordan and Breach.Google Scholar
  143. 143.
    Podlubny, I. (1999). Fractional differential equations. Academic Press.Google Scholar
  144. 144.
    Heymans, N., & Podlubny, I. (2006). Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta, 45, 765–772.CrossRefGoogle Scholar
  145. 145.
    Matignon, D. (1996). Stability results of fractional differential equations with applications to control processing. In: IMACS, IEEE-SMC, Lille, France.Google Scholar
  146. 146.
    Li, Y., Chen, Y., & Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability. Computers & Mathematics with Applications, 59, 21–1810.Google Scholar
  147. 147.
    Chen, D., Zhang, R., Liu, X., & Ma, X. (2014). Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Communications in Nonlinear Science and Numerical Simulation, 19, 4105–4121.MathSciNetCrossRefGoogle Scholar
  148. 148.
    Aguila-Camacho, N., Duarte-Mermoud, M. A., & Gallegos, J. A. (2014). Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 19, 2951–2957.MathSciNetCrossRefGoogle Scholar
  149. 149.
    Ouannas, A., & Mahmoud, E. (2014). Inverse matrix projective synchro-nization for discrete chaotic systems with different dimensions. Intelligence and Electronic Systems, 3, 188–192.CrossRefGoogle Scholar
  150. 150.
    Wang, X.-Y., & Zhang, H. (2013). Bivariate module-phase synchronization of a fractional-order lorenz system in diFFerent dimensions. Journal of Computational and Nonlinear Dynamics, 8, 031017.CrossRefGoogle Scholar
  151. 151.
    Zhou, P., Wei, L. J., & Cheng, X. F. (2009). A novel fractional-order hyperchaotic system and its synchronization. Chinese Physics B, 18, 2674.CrossRefGoogle Scholar
  152. 152.
    Liu, C., Liu, T., Liu, L., & Liu, K. (2004). A new chaotic attractor. Chaos Solitons Fractals, 22, 1031–1038.MathSciNetCrossRefMATHGoogle Scholar
  153. 153.
    Han, Q., Liu, C. X., Sun, L., & Zhu, D. R. (2013). A fractional order hyperchaotic system derived from a Liu system and its circuit realization. Chinese Physics B, 22, 6–020502.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Adel Ouannas
    • 1
  • Ahmad Taher Azar
    • 2
    • 3
  • Toufik Ziar
    • 4
  • Sundarapandian Vaidyanathan
    • 5
  1. 1.Laboratory of Mathematics, Informatics and Systems (LAMIS)University of Larbi TebessiTebessaAlgeria
  2. 2.Faculty of Computers and InformationBenha UniversityBanhaEgypt
  3. 3.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityCairoEgypt
  4. 4.Department of Material SciencesUniversity of TebessaTébessaAlgeria
  5. 5.Research and Development CentreVel Tech UniversityChennaiIndia

Personalised recommendations