Adaptive Control of a Novel Nonlinear Double Convection Chaotic System

  • Sundarapandian Vaidyanathan
  • Quanmin Zhu
  • Ahmad Taher Azar
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 688)

Abstract

This research work describes a six-term novel nonlinear double convection chaotic system with two nonlinearities. First, this work presents the 3-D dynamics of the novel nonlinear double convection chaotic system and depicts the phase portraits of the system. Our novel nonlinear double convection chaotic system is obtained by modifying the dynamics of the Rucklidge chaotic system (1992). Next, the qualitative properties of the novel chaotic system are discussed in detail. The novel chaotic system has three equilibrium points. We show that the equilibrium point at the origin is a saddle point, while the other two equilibrium points are saddle-foci. The Lyapunov exponents of the novel nonlinear double convection chaotic system are obtained as \(L_1 = 0.2089\), \(L_2 = 0\) and \(L_3 = -3.2123\). The Lyapunov dimension of the novel chaotic system is obtained as \(D_{L} = 2.0650\). Next, we present the design of adaptive feedback controller for globally stabilizing the trajectories of the novel nonlinear double convection chaotic system with unknown parameters. Furthermore, we present the design of adaptive feedback controller for achieving complete synchronization of the identical novel nonlinear double convection chaotic systems with unknown parameters. The main adaptive control results are proved using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work for the novel nonlinear double convection system.

Keywords

Chaos Chaotic systems Rucklidge system Double convection Adaptive control Feedback control Synchronization 

References

  1. 1.
    Azar, A. T., & Vaidyanathan, S. (2015a). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Germany: Springer.Google Scholar
  2. 2.
    Azar, A. T., & Vaidyanathan, S. (2015b). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575). Germany: Springer.Google Scholar
  3. 3.
    Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.Google Scholar
  4. 4.
    Barrow-Green, J. (1997). Poincaré and the three body problem. American Mathematical Society.Google Scholar
  5. 5.
    Lorenz, E. N. (1963). Deterministic periodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.CrossRefGoogle Scholar
  6. 6.
    Sprott, J. C. (2010). Elegant chaos. World Scientific.Google Scholar
  7. 7.
    Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397–398.CrossRefGoogle Scholar
  8. 8.
    Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79, 573–579.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Henon, M., & Heiles, C. (1964). The applicability of the third integral Of motion: Some numerical experiments. The Astrophysical Journal, 69, 73–79.MathSciNetGoogle Scholar
  10. 10.
    Genesio, R., & Tesi, A. (1992). Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica, 28(3), 531–548.MATHCrossRefGoogle Scholar
  11. 11.
    Sprott, J. C. (1994). Some simple chaotic flows. Physical Review E, 50(2), 647–650.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(7), 1465–1466.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12(3), 659–661.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rikitake, T. (1958). Oscillations of a system of disk dynamos. Mathematical Proceedings of the Cambridge Philosophical Society, 54(1), 89–105.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Liu, C., Liu, T., Liu, L., & Liu, K. (2004). A new chaotic attractor. Chaos, Solitions and Fractals, 22(5), 1031–1038.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Shimizu, T., & Morioka, N. (1980). On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Physics Letters A, 76(3–4), 201–204.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rucklidge, A. M. (1992). Chaos in models of double convection. Journal of Fluid Mechanics, 237, 209–229.Google Scholar
  18. 18.
    Pandey, A., Baghel, R. K., & Singh, R. P. (2012). Synchronization analysis of a new autonomous chaotic system with its application in signal masking. IOSR Journal of Electronics and Communication Engineering, 1(5), 16–22.CrossRefGoogle Scholar
  19. 19.
    Qi, G., & Chen, G. (2006). Analysis and circuit implementation of a new 4D chaotic system. Physics Letters A, 352, 386–397.MATHCrossRefGoogle Scholar
  20. 20.
    Li, D. (2008). A three-scroll chaotic attractor. Physics Letters A, 372(4), 387–393.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Wei, Z., & Yang, Q. (2010). Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Applied Mathematics and Computation, 217(1), 422–429.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zhou, W., Xu, Y., Lu, H., & Pan, L. (2008). On dynamics analysis of a new chaotic attractor. Physics Letters A, 372(36), 5773–5777.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Zhu, C., Liu, Y., & Guo, Y. (2010). Theoretic and numerical study of a new chaotic system. Intelligent Information Management, 2, 104–109.CrossRefGoogle Scholar
  24. 24.
    Sundarapandian, V. (2013). Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6(4), 45–52.Google Scholar
  25. 25.
    Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55(7–8), 1904–1915.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Dadras, S., & Momeni, H. R. (2009). A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Physics Letters A, 373, 3637–3642.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Tacha, O. I., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Vaidyanathan, S., & Pham, V. T. (2016). Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Applied Mathematics and Computation, 276, 200–217.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Vaidyanathan, S. (2013a). A new six-term 3-D chaotic system with an exponential nonlinearity. Far East Journal of Mathematical Sciences, 79(1), 135–143.MATHGoogle Scholar
  29. 29.
    Vaidyanathan, S. (2013b). Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of Engineering Science and Technology Review, 6(4), 53–65.MathSciNetGoogle Scholar
  30. 30.
    Vaidyanathan, S. (2014a). A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East Journal of Mathematical Sciences, 84(2), 219–226.MathSciNetMATHGoogle Scholar
  31. 31.
    Vaidyanathan, S. (2014b). Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics, 223(8), 1519–1529.Google Scholar
  32. 32.
    Vaidyanathan, S. (2014c). Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 22(1), 41–53.CrossRefGoogle Scholar
  33. 33.
    Vaidyanathan, S. (2014d). Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. International Journal of Modelling, Identification and Control, 22(3), 207–217.CrossRefGoogle Scholar
  34. 34.
    Vaidyanathan, S. (2015b). A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. Journal of Engineering Science and Technology Review, 8(2), 106–115.MathSciNetGoogle Scholar
  35. 35.
    Vaidyanathan, S. (2015m). Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. International Journal of Modelling, Identification and Control, 23(2), 164–172.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Vaidyanathan, S. (2016a). A novel 2-D chaotic enzymes-substrates reaction system and its adaptive backstepping control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 507–528). Germany: Springer.Google Scholar
  37. 37.
    Vaidyanathan, S. (2016b). A novel 3-D conservative jerk chaotic system with two quadratic nonlinearities and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 349–376). Germany: Springer.Google Scholar
  38. 38.
    Vaidyanathan, S. (2016c). A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control. Archives of Control Sciences, 26(1), 19–47.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Vaidyanathan, S. (2016d). A novel 4-D hyperchaotic thermal convection system and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 75–100). Germany: Springer.Google Scholar
  40. 40.
    Vaidyanathan, S. (2016e). A novel double convecton system, its analysis, adaptive control and synchronization. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 553–579). Germany: Springer.Google Scholar
  41. 41.
    Vaidyanathan, S. (2016f). A seven-term novel 3-D jerk chaotic system with two quadratic nonlinearities and its adaptive backstepping control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 581–607). Germany: Springer.Google Scholar
  42. 42.
    Vaidyanathan, S. (2016g). Analysis, adaptive control and synchronization of a novel 3-D chaotic system with a quartic nonlinearity and two quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 429–453). Germany: Springer.Google Scholar
  43. 43.
    Vaidyanathan, S. (2016h). Analysis, control and synchronization of a novel 4-D highly hyperchaotic system with hidden attractors. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 529–552). Germany: Springer.Google Scholar
  44. 44.
    Vaidyanathan, S. (2016j). Dynamic analysis, adaptive control and synchronization of a novel highly chaotic system with four quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 405–428). Germany: Springer.Google Scholar
  45. 45.
    Vaidyanathan, S. (2016k). Global chaos synchronization of a novel 3-D chaotic system with two quadratic nonlinearities via active and adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 481–506). Germany: Springer.Google Scholar
  46. 46.
    Vaidyanathan, S. (2016l). Qualitative analysis and properties of a novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 455–480). Germany: Springer.Google Scholar
  47. 47.
    Vaidyanathan, S., & Azar, A. T. (2015b). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modelling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Germany: Springer.Google Scholar
  48. 48.
    Vaidyanathan, S., & Madhavan, K. (2013). Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6(2), 121–137.Google Scholar
  49. 49.
    Vaidyanathan, S., & Pakiriswamy, S. (2015). A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. Journal of Engineering Science and Technology Review, 8(2), 52–60.Google Scholar
  50. 50.
    Vaidyanathan, S., & Volos, C. (2015). Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Archives of Control Sciences, 25(3), 333–353.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Vaidyanathan, S., Volos, C., Pham, V. T., Madhavan, K., & Idowu, B. A. (2014b). Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 24(3), 375–403.MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Vaidyanathan, S., Rajagopal, K., Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2015b). Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. Journal of Engineering Science and Technology Review, 8(2), 130–141.Google Scholar
  53. 53.
    Vaidyanathan, S., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., & Pham, V. T. (2015d). Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 24–36.Google Scholar
  54. 54.
    Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015e). Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 174–184.Google Scholar
  55. 55.
    Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015f). Global chaos control of a novel nine-term chaotic system via sliding mode control. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 571–590). Germany: Springer.Google Scholar
  56. 56.
    Vaidyanathan, S., & Azar, A. T. (2016a). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 203–224). Germany: Springer.Google Scholar
  57. 57.
    Vaidyanathan, S., & Azar, A. T. (2016b). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 249–274). Germany: Springer.Google Scholar
  58. 58.
    Vaidyanathan, S., & Azar, A. T. (2016d). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 155–178). Germany: Springer.Google Scholar
  59. 59.
    Vaidyanathan, S., & Azar, A. T. (2016e). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 275–296). Germany: Springer.Google Scholar
  60. 60.
    Vaidyanathan, S., & Azar, A. T. (2016f). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 179–202). Germany: Springer.Google Scholar
  61. 61.
    Pehlivan, I., Moroz, I. M., & Vaidyanathan, S. (2014). Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333(20), 5077–5096.CrossRefGoogle Scholar
  62. 62.
    Sampath, S., Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015). An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 1–6.Google Scholar
  63. 63.
    Akgul, A., Moroz, I., Pehlivan, I., & Vaidyanathan, S. (2016). A new four-scroll chaotic attractor and its engineering applications. Optik, 127, 5491–5499.CrossRefGoogle Scholar
  64. 64.
    Pham, V. T., Vaidyanathan, S., Volos, C. K., & Jafari, S. (2015). Hidden attractors in a chaotic system with an exponential nonlinear term. European Physical Journal—Special Topics, 224(8), 1507–1517.Google Scholar
  65. 65.
    Pham, V. T., Jafari, S., Vaidyanathan, S., Volos, C., & Wang, X. (2016a). A novel memristive neural network with hidden attractors and its circuitry implementation. Science China Technological Sciences, 59(3), 358–363.CrossRefGoogle Scholar
  66. 66.
    Pham, V. T., Vaidyanathan, S., Volos, C., Jafari, S., & Kingni, S. T. (2016b). A no-equilibrium hyperchaotic system with a cubic nonlinear term. Optik, 127(6), 3259–3265.CrossRefGoogle Scholar
  67. 67.
    Pham, V. T., Vaidyanathan, S., Volos, C. K., Jafari, S., Kuznetsov, N. V., & Hoang, T. M. (2016c). A novel memristive time-delay chaotic system without equilibrium points. European Physical Journal: Special Topics, 225(1), 127–136.Google Scholar
  68. 68.
    Azar, A. T. (2010). Fuzzy systems. Vienna, Austria: IN-TECH.Google Scholar
  69. 69.
    Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR). USA: IGI-Global.Google Scholar
  70. 70.
    Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576). Germany: Springer.Google Scholar
  71. 71.
    Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzzines and soft computing (Vol. 319). Germany: Springer.Google Scholar
  72. 72.
    Vaidyanathan, S. (2015p). Anti-synchronization of Mathieu-Van der Pol chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(11), 638–653.Google Scholar
  73. 73.
    Vaidyanathan, S. (2015t). Global chaos control of Mathieu-Van der pol system via adaptive control method. International Journal of ChemTech Research, 8(9), 406–417.MathSciNetGoogle Scholar
  74. 74.
    Vaidyanathan, S. (2015v). Global chaos synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. International Journal of ChemTech Research, 8(11), 141–151.Google Scholar
  75. 75.
    Vaidyanathan, S. (2015w). Global chaos synchronization of Mathieu-Van der Pol chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(10), 148–162.Google Scholar
  76. 76.
    Vaidyanathan, S. (2015x). Global chaos synchronization of novel coupled Van der Pol conservative chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(8), 95–111.Google Scholar
  77. 77.
    Vaidyanathan, S. (2015y). Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. International Journal of PharmTech Research, 8(6), 156–166.Google Scholar
  78. 78.
    Vaidyanathan, S. (2016i). Anti-synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. International Journal of ChemTech Research, 9(2), 297–304.Google Scholar
  79. 79.
    Li, N., Pan, W., Yan, L., Luo, B., & Zou, X. (2014). Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Communications in Nonlinear Science and Numerical Simulation, 19(6), 1874–1883.CrossRefGoogle Scholar
  80. 80.
    Yuan, G., Zhang, X., & Wang, Z. (2014). Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Optik—International Journal for Light and Electron Optics, 125(8), 1950–1953.CrossRefGoogle Scholar
  81. 81.
    Vaidyanathan, S. (2015c). A novel chemical chaotic reactor system and its adaptive control. International Journal of ChemTech Research, 8(7), 146–158.MathSciNetGoogle Scholar
  82. 82.
    Vaidyanathan, S. (2015d). A novel chemical chaotic reactor system and its output regulation via integral sliding mode control. International Journal of ChemTech Research, 8(11), 669–683.Google Scholar
  83. 83.
    Vaidyanathan, S. (2015h). Adaptive control design for the anti-synchronization of novel 3-D chemical chaotic reactor systems. International Journal of ChemTech Research, 8(11), 654–668.Google Scholar
  84. 84.
    Vaidyanathan, S. (2015i). Adaptive control of a chemical chaotic reactor. International Journal of PharmTech Research, 8(3), 377–382.MathSciNetGoogle Scholar
  85. 85.
    Vaidyanathan, S. (2015j). Adaptive synchronization of chemical chaotic reactors. International Journal of ChemTech Research, 8(2), 612–621.MathSciNetGoogle Scholar
  86. 86.
    Vaidyanathan, S. (2015l). Adaptive synchronization of novel 3-D chemical chaotic reactor systems. International Journal of ChemTech Research, 8(7), 159–171.MathSciNetGoogle Scholar
  87. 87.
    Vaidyanathan, S. (2015n). Anti-synchronization of Brusselator chemical reaction systems via adaptive control. International Journal of ChemTech Research, 8(6), 759–768.Google Scholar
  88. 88.
    Vaidyanathan, S. (2015o). Anti-synchronization of chemical chaotic reactors via adaptive control method. International Journal of ChemTech Research, 8(8), 73–85.Google Scholar
  89. 89.
    Vaidyanathan, S. (2015r). Dynamics and control of Brusselator chemical reaction. International Journal of ChemTech Research, 8(6), 740–749.Google Scholar
  90. 90.
    Vaidyanathan, S. (2015s). Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. International Journal of ChemTech Research, 8(6), 795–803.Google Scholar
  91. 91.
    Vaidyanathan, S. (2015u). Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. International Journal of ChemTech Research, 8(7), 209–221.MathSciNetGoogle Scholar
  92. 92.
    Das, S., Goswami, D., Chatterjee, S., & Mukherjee, S. (2014). Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems. Engineering Applications of Artificial Intelligence, 30, 189–198.CrossRefGoogle Scholar
  93. 93.
    Kyriazis, M. (1991). Applications of chaos theory to the molecular biology of aging. Experimental Gerontology, 26(6), 569–572.CrossRefGoogle Scholar
  94. 94.
    Vaidyanathan, S. (2015a). 3-cells cellular neural network (CNN) attractor and its adaptive biological control. International Journal of PharmTech Research, 8(4), 632–640.Google Scholar
  95. 95.
    Vaidyanathan, S. (2015e). Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. International Journal of PharmTech Research, 8(2), 256–261.MathSciNetGoogle Scholar
  96. 96.
    Vaidyanathan, S. (2015f). Adaptive biological control of generalized Lotka-Volterra three-species biological system. International Journal of PharmTech Research, 8(4), 622–631.Google Scholar
  97. 97.
    Vaidyanathan, S. (2015g). Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. International Journal of PharmTech Research, 8(5), 964–973.Google Scholar
  98. 98.
    Vaidyanathan, S. (2015k). Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. International Journal of PharmTech Research, 8(5), 928–937.Google Scholar
  99. 99.
    Vaidyanathan, S. (2015q). Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. International Journal of PharmTech Research, 8(5), 956–963.Google Scholar
  100. 100.
    Gibson, W. T., & Wilson, W. G. (2013). Individual-based chaos: Extensions of the discrete logistic model. Journal of Theoretical Biology, 339, 84–92.MathSciNetCrossRefGoogle Scholar
  101. 101.
    Suérez, I. (1999). Mastering chaos in ecology. Ecological Modelling, 117(2–3), 305–314.CrossRefGoogle Scholar
  102. 102.
    Lang, J. (2015). Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Optics Communications, 338, 181–192.CrossRefGoogle Scholar
  103. 103.
    Zhang, X., Zhao, Z., & Wang, J. (2014). Chaotic image encryption based on circular substitution box and key stream buffer. Signal Processing: Image Communication, 29(8), 902–913.Google Scholar
  104. 104.
    Rhouma, R., & Belghith, S. (2011). Cryptoanalysis of a chaos based cryptosystem on DSP. Communications in Nonlinear Science and Numerical Simulation, 16(2), 876–884.MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Usama, M., Khan, M. K., Alghatbar, K., & Lee, C. (2010). Chaos-based secure satellite imagery cryptosystem. Computers and Mathematics with Applications, 60(2), 326–337.MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995.CrossRefGoogle Scholar
  107. 107.
    Azar, A. T., & Serrano, F. E. (2015a). Adaptive sliding mode control of the Furuta pendulum. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 1–42). Germany: Springer.Google Scholar
  108. 108.
    Azar, A. T., & Serrano, F. E. (2015b). Deadbeat control for multivariable systems with time varying delays. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 97–132). Germany: Springer.Google Scholar
  109. 109.
    Azar, A. T., & Serrano, F. E. (2015c). Design and modeling of anti wind up PID controllers. In Q. Zhu & A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319, pp. 1–44). Germany: Springer.Google Scholar
  110. 110.
    Azar, A. T., & Serrano, F. E. (2015d). Stabilizatoin and control of mechanical systems with backlash. In A. T. Azar & S. Vaidyanathan (Eds.), Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) (pp. 1–60). USA: IGI-Global.Google Scholar
  111. 111.
    Feki, M. (2003). An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons and Fractals, 18(1), 141–148.MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Murali, K., & Lakshmanan, M. (1998). Secure communication using a compound signal from generalized chaotic systems. Physics Letters A, 241(6), 303–310.MATHCrossRefGoogle Scholar
  113. 113.
    Zaher, A. A., & Abu-Rezq, A. (2011). On the design of chaos-based secure communication systems. Communications in Nonlinear Systems and Numerical Simulation, 16(9), 3721–3727.MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Mondal, S., & Mahanta, C. (2014). Adaptive second order terminal sliding mode controller for robotic manipulators. Journal of the Franklin Institute, 351(4), 2356–2377.MathSciNetCrossRefGoogle Scholar
  115. 115.
    Nehmzow, U., & Walker, K. (2005). Quantitative description of robot-environment interaction using chaos theory. Robotics and Autonomous Systems, 53(3–4), 177–193.CrossRefGoogle Scholar
  116. 116.
    Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robotics and Autonomous Systems, 61(12), 1314–1322.CrossRefGoogle Scholar
  117. 117.
    Qu, Z. (2011). Chaos in the genesis and maintenance of cardiac arrhythmias. Progress in Biophysics and Molecular Biology, 105(3), 247–257.CrossRefGoogle Scholar
  118. 118.
    Witte, C. L., & Witte, M. H. (1991). Chaos and predicting varix hemorrhage. Medical Hypotheses, 36(4), 312–317.CrossRefGoogle Scholar
  119. 119.
    Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications, 2(4), 1–28.CrossRefGoogle Scholar
  120. 120.
    Li, Z., & Chen, G. (2006). Integration of fuzzy logic and chaos theory, studies in fuzziness and soft computing (Vol. 187). Germany: Springer.CrossRefGoogle Scholar
  121. 121.
    Huang, X., Zhao, Z., Wang, Z., & Li, Y. (2012). Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing, 94, 13–21.CrossRefGoogle Scholar
  122. 122.
    Kaslik, E., & Sivasundaram, S. (2012). Nonlinear dynamics and chaos in fractional-order neural networks. Neural Networks, 32, 245–256.MATHCrossRefGoogle Scholar
  123. 123.
    Lian, S., & Chen, X. (2011). Traceable content protection based on chaos and neural networks. Applied Soft Computing, 11(7), 4293–4301.CrossRefGoogle Scholar
  124. 124.
    Pham, V. T., Volos, C. K., Vaidyanathan, S., Le, T. P., & Vu, V. Y. (2015b). A memristor-based hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating. Journal of Engineering Science and Technology Review, 8(2), 205–214.Google Scholar
  125. 125.
    Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Tlelo-Cuautle, E., & Vaidyanathan, S. (2015). Memristor: A new concept in synchronization of coupled neuromorphic circuits. Journal of Engineering Science and Technology Review, 8(2), 157–173.Google Scholar
  126. 126.
    Carroll, T. L., & Pecora, L. M. (1991). Synchronizing chaotic circuits. IEEE Transactions on Circuits and Systems, 38(4), 453–456.MATHCrossRefGoogle Scholar
  127. 127.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821–824.MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Karthikeyan, R., & Sundarapandian, V. (2014). Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65(2), 97–103.CrossRefGoogle Scholar
  129. 129.
    Sarasu, P., & Sundarapandian, V. (2011a). Active controller design for the generalized projective synchronization of four-scroll chaotic systems. International Journal of Systems Signal Control and Engineering Application, 4(2), 26–33.Google Scholar
  130. 130.
    Sarasu, P., & Sundarapandian, V. (2011b). The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. International Journal of Soft Computing, 6(5), 216–223.CrossRefGoogle Scholar
  131. 131.
    Sundarapandian, V. (2010). Output regulation of the Lorenz attractor. Far East Journal of Mathematical Sciences, 42(2), 289–299.MathSciNetMATHGoogle Scholar
  132. 132.
    Sundarapandian, V., & Karthikeyan, R. (2012b). Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. Journal of Engineering and Applied Sciences, 7(3), 254–264.CrossRefGoogle Scholar
  133. 133.
    Vaidyanathan, S. (2011). Hybrid chaos synchronization of Liu and Lu systems by active nonlinear control. Communications in Computer and Information Science, 204, 1–10.CrossRefGoogle Scholar
  134. 134.
    Vaidyanathan, S. (2012d). Output regulation of the Liu chaotic system. Applied Mechanics and Materials, 110–116, 3982–3989.Google Scholar
  135. 135.
    Vaidyanathan, S., & Rajagopal, K. (2011a). Anti-synchronization of Li and T chaotic systems by active nonlinear control. Communications in Computer and Information Science, 198, 175–184.CrossRefGoogle Scholar
  136. 136.
    Vaidyanathan, S., & Rajagopal, K. (2011b). Global chaos synchronization of hyperchaotic Pang and Wang systems by active nonlinear control. Communications in Computer and Information Science, 204, 84–93.CrossRefGoogle Scholar
  137. 137.
    Vaidyanathan, S., & Rasappan, S. (2011). Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Communications in Computer and Information Science, 198, 10–17.CrossRefGoogle Scholar
  138. 138.
    Vaidyanathan, S., Pham, V. T., & Volos, C. K. (2015). A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. European Physical Journal: Special Topics, 224(8), 1575–1592.Google Scholar
  139. 139.
    Sarasu, P., & Sundarapandian, V. (2012a). Adaptive controller design for the generalized projective synchronization of 4-scroll systems. International Journal of Systems Signal Control and Engineering Application, 5(2), 21–30.Google Scholar
  140. 140.
    Sarasu, P., & Sundarapandian, V. (2012b). Generalized projective synchronization of three-scroll chaotic systems via adaptive control. European Journal of Scientific Research, 72(4), 504–522.Google Scholar
  141. 141.
    Sarasu, P., & Sundarapandian, V. (2012c). Generalized projective synchronization of two-scroll systems via adaptive control. International Journal of Soft Computing, 7(4), 146–156.CrossRefGoogle Scholar
  142. 142.
    Sundarapandian, V., & Karthikeyan, R. (2011a). Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. International Journal of Systmes Signal Control and Engineering Application, 4(2), 18–25.Google Scholar
  143. 143.
    Sundarapandian, V., & Karthikeyan, R. (2011b). Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. European Journal of Scientific Research, 64(1), 94–106.Google Scholar
  144. 144.
    Sundarapandian, V., & Karthikeyan, R. (2012a). Adaptive anti-synchronization of uncertain Tigan and Li systems. Journal of Engineering and Applied Sciences, 7(1), 45–52.MATHCrossRefGoogle Scholar
  145. 145.
    Vaidyanathan, S. (2012b). Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. International Journal of Control Theory and Applications, 5(1), 41–59.Google Scholar
  146. 146.
    Vaidyanathan, S. (2013c). Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Advances in Intelligent Systems and Computing, 177, 1–10.CrossRefGoogle Scholar
  147. 147.
    Vaidyanathan, S. (2015z). Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 23(4), 380–392.CrossRefGoogle Scholar
  148. 148.
    Vaidyanathan, S., & Azar, A. T. (2015a). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Germany: Springer.Google Scholar
  149. 149.
    Vaidyanathan, S., & Azar, A. T. (2016c). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 225–247). Germany: Springer.Google Scholar
  150. 150.
    Vaidyanathan, S., & Pakiriswamy, S. (2013). Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. International Journal of Control Theory and Applications, 6(2), 153–163.Google Scholar
  151. 151.
    Vaidyanathan, S., & Rajagopal, K. (2011c). Global chaos synchronization of Lü and Pan systems by adaptive nonlinear control. Communications in Computer and Information Science, 205, 193–202.CrossRefGoogle Scholar
  152. 152.
    Vaidyanathan, S., & Rajagopal, K. (2012). Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. International Journal of Soft Computing, 7(1), 28–37.MATHCrossRefGoogle Scholar
  153. 153.
    Vaidyanathan, S., Volos, C., & Pham, V. T. (2014a). Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Archives of Control Sciences, 24(4), 409–446.MathSciNetMATHGoogle Scholar
  154. 154.
    Vaidyanathan, S., Volos, C., Pham, V. T., & Madhavan, K. (2015c). Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Archives of Control Sciences, 25(1), 5–28.MathSciNetCrossRefGoogle Scholar
  155. 155.
    Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016a). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 681–697). Germany: Springer.Google Scholar
  156. 156.
    Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016b). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 699–718). Germany: Springer.Google Scholar
  157. 157.
    Gan, Q., & Liang, Y. (2012). Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. Journal of the Franklin Institute, 349(6), 1955–1971.MathSciNetMATHCrossRefGoogle Scholar
  158. 158.
    Li, N., Zhang, Y., & Nie, Z. (2011). Synchronization for general complex dynamical networks with sampled-data. Neurocomputing, 74(5), 805–811.CrossRefGoogle Scholar
  159. 159.
    Xiao, X., Zhou, L., & Zhang, Z. (2014). Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Communications in Nonlinear Science and Numerical Simulation, 19(6), 2039–2047.MathSciNetCrossRefGoogle Scholar
  160. 160.
    Zhang, H., & Zhou, J. (2012). Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Systems and Control Letters, 61(12), 1277–1285.MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    Chen, W. H., Wei, D., & Lu, X. (2014). Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Communications in Nonlinear Science and Numerical Simulation, 19(9), 3298–3312.MathSciNetCrossRefGoogle Scholar
  162. 162.
    Jiang, G. P., Zheng, W. X., & Chen, G. (2004). Global chaos synchronization with channel time-delay. Chaos, Solitons and Fractals, 20(2), 267–275.MathSciNetMATHCrossRefGoogle Scholar
  163. 163.
    Shahverdiev, E. M., & Shore, K. A. (2009). Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization. Optics Communications, 282(17), 3568–2572.CrossRefGoogle Scholar
  164. 164.
    Rasappan, S., & Vaidyanathan, S. (2012a). Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East Journal of Mathematical Sciences, 67(2), 265–287.MathSciNetMATHGoogle Scholar
  165. 165.
    Rasappan, S., & Vaidyanathan, S. (2012b). Hybrid synchronization of n-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback. Archives of Control Sciences, 22(3), 343–365.MathSciNetMATHGoogle Scholar
  166. 166.
    Rasappan, S., & Vaidyanathan, S. (2012c). Synchronization of hyperchaotic Liu system via backstepping control with recursive feedback. Communications in Computer and Information Science, 305, 212–221.MATHCrossRefGoogle Scholar
  167. 167.
    Rasappan, S., & Vaidyanathan, S. (2013). Hybrid synchronization of \(n\)-scroll chaotic Chua circuits using adaptive backstepping control design with recursive feedback. Malaysian Journal of Mathematical Sciences, 7(2), 219–246.MathSciNetGoogle Scholar
  168. 168.
    Rasappan, S., & Vaidyanathan, S. (2014). Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Mathematical Journal, 54(1), 293–320.MathSciNetMATHCrossRefGoogle Scholar
  169. 169.
    Suresh, R., & Sundarapandian, V. (2013). Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East Journal of Mathematical Sciences, 73(1), 73–95.MATHGoogle Scholar
  170. 170.
    Vaidyanathan, S., & Rasappan, S. (2014). Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian Journal for Science and Engineering, 39(4), 3351–3364.CrossRefGoogle Scholar
  171. 171.
    Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015a). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Studies in Computational Intelligence, 581, 39–58.Google Scholar
  172. 172.
    Sundarapandian, V., & Sivaperumal, S. (2011). Sliding controller design of hybrid synchronization of four-wing chaotic systems. International Journal of Soft Computing, 6(5), 224–231.CrossRefGoogle Scholar
  173. 173.
    Vaidyanathan, S. (2012a). Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Advances in Intelligent Systems and Computing, 176, 329–337.CrossRefGoogle Scholar
  174. 174.
    Vaidyanathan, S. (2012c). Global chaos control of hyperchaotic Liu system via sliding control method. International Journal of Control Theory and Applications, 5(2), 117–123.Google Scholar
  175. 175.
    Vaidyanathan, S. (2012e). Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. International Journal of Control Theory and Applications, 5(1), 15–20.Google Scholar
  176. 176.
    Vaidyanathan, S. (2014e). Global chaos synchronization of identical Li-Wu chaotic systems via sliding mode control. International Journal of Modelling, Identification and Control, 22(2), 170–177.MathSciNetCrossRefGoogle Scholar
  177. 177.
    Vaidyanathan, S., & Azar, A. T. (2015c). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Studies in Computational Intelligence, 576, 527–547.Google Scholar
  178. 178.
    Vaidyanathan, S., & Azar, A. T. (2015d). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Studies in Computational Intelligence, 576, 549–569.Google Scholar
  179. 179.
    Vaidyanathan, S., & Sampath, S. (2011). Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Communications in Computer and Information Science, 205, 156–164.CrossRefGoogle Scholar
  180. 180.
    Vaidyanathan, S., & Sampath, S. (2012). Anti-synchronization of four-wing chaotic systems via sliding mode control. International Journal of Automation and Computing, 9(3), 274–279.CrossRefGoogle Scholar
  181. 181.
    Khalil, H. K. (2001). Nonlinear systems. New Jersey, USA: Prentice Hall.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sundarapandian Vaidyanathan
    • 1
  • Quanmin Zhu
    • 2
  • Ahmad Taher Azar
    • 3
    • 4
  1. 1.Research and Development Centre, Vel Tech UniversityChennaiIndia
  2. 2.Department of Engineering Design and MathematicsUniversity of the West of EnglandBristolUK
  3. 3.Faculty of Computers and InformationBenha UniversityBanhaEgypt
  4. 4.Nanoelectronics Integrated Systems Center (NISC), Nile UniversityCairoEgypt

Personalised recommendations