Skip to main content

Comparative Study on Fractional Order PID and PID Controllers on Noise Suppression for Manipulator Trajectory Control

  • Chapter
  • First Online:
Book cover Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

The main contribution of this chapter is to demonstrate the sensor and controller noise suppression capabilities of the best tuned Fractional Order-Proportional plus Integral plus Derivative (FO-PID) and classical PID controllers in closed-loop. A complex non-linear and coupled system, a 2-link rigid planar manipulator was considered for the study as it encounters noise in many forms such as sensor and controller noise during the operation in industry. Uniform White Noise (UWN) and Gaussian White Noise (GWN) were considered both for the sensor and the controller in the closed-loop and a comparative study was performed for FO-PID and PID controllers. Both the controllers were tuned using Genetic Algorithm and all the simulations were performed in LabVIEW environment. The simulation results have revealed that FO-PID controller demonstrates superior sensor and controller noise suppression as compared to conventional PID controller in the closed-loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aström, K. J., & Hägglund, T. (2006). Advanced PID controllers (1st ed.). Research Triangle Park, NC: ISA. 27709.

    Google Scholar 

  2. Ayala, H. V. H., & Coelho, L. D. S. (2012). Tuning of PID controller based on a multi-objective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications, 39(10), 8968–8974.

    Article  Google Scholar 

  3. Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. Springer. doi:10.1007/s00521-014-1560-x.

  4. Azar, A. T., & Serrano, F. E. (2015). Deadbeat control for multivariable systems with time varying delays. In Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 97–132). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-13132-0_6.

  5. Azar, A. T., & Serrano, F. E. (2015). Adaptive sliding mode control of the furuta pendulum. In: A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 1–42). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-11173-5_1.

  6. Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In: Q. Zhu & A. T. Azar (Eds.), Complex system modeling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319, pp. 1–44). Springer: Germany. doi:10.1007/9783319128832_1.

  7. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Springer: Germany. ISBN: 9783319131313.

    Google Scholar 

  8. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575) SpringerVerlag: Germany. ISBN: 9783319110165.

    Google Scholar 

  9. Azar, A. T., & Vaidyanathan, S. (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series, IGI Global: USA.

    Google Scholar 

  10. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. ISBN: 978-3-319-30338-3.

    Google Scholar 

  11. Azar, A. T., Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576). SpringerVerlag: Germany. ISBN: 9783319111728.

    Google Scholar 

  12. Bingul, Z., & Karahan, O. (2011). A fuzzy logic controller tuned with PSO for a 2 DOF robot trajectory control. Expert Systems with Applications, 38(1), 1017–1031.

    Article  Google Scholar 

  13. Bingul, Z., & Karahan, O. (2011). Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk Journal of Electrical Engineering and Computer Science, 20(1), 1123–1136.

    Google Scholar 

  14. Bingul, Z., & Karahan, O. (2011, April 13–15). Tuning of fractional PID controllers using PSO algorithm for robot trajectory control. In Proceedings of IEEE international conference on mechatronics. Turkey, pp. 955–960.

    Google Scholar 

  15. Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 681–697). Springer-Verlag: Germany.

    Google Scholar 

  16. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.

    Google Scholar 

  17. Chaillet, A., Loria, A., Kelly, R. (2006, December 13–15). Robustness of PID controlled manipulators with respect to external disturbance. In Proceedings of IEEE conference on Decision and Control. San Diego, USA (pp. 2949–2954).

    Google Scholar 

  18. Chen, C. S. (2008). Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Transactions on Industrial Electronics, 55(9), 3402–3414.

    Article  Google Scholar 

  19. Craig, J. J. (1996). Introduction to robotics: mechanics and control. New York: Addison-Wesley.

    Google Scholar 

  20. Delavari, H., Ghaderi, R., Ranjbar, A., HosseinNia, & S. H., Momani, S. (2010). Adaptive fractional PID controller for robotic manipulator. In: Proceeding of 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain (pp. 1–7).

    Google Scholar 

  21. El-Khazali, R. (2013). Fractional-order PIλDµ controller design. Computer and Mathematics with Application, 66(5), 639646.

    Article  MathSciNet  Google Scholar 

  22. Franklin, G. F., Powell, J. D., & Workman, M. L. (1998). Digital control of dynamic systems (3rd ed.). New York: Addison-Wesley Longman.

    MATH  Google Scholar 

  23. Kumar, V., Rana, K. P. S., Kumar, A., Sharma, R., Mishra, P., & Nair, S. S. (2013, December 26–28). Development of a genetic algorithm toolkit in LabVIEW. In: Proceedings of the 3rd International Conference on Soft Computing for Problem Solving (SocProS-13). Advances in intelligent systems and computing—Series (Vol. 259, pp. 281–296). Springer: Greater Noida Extension Centre of IIT Roorkee, India. doi:10.1007/978-81-322-1771-8_25.

  24. Kumar, V., Rana, K. P. S., Kumar, J., Mishra, P., & Nair, S. S. (2016). A robust fractional order fuzzy p + fuzzy i +fuzzy d controller for nonlinear and uncertain system. International Journal of Automation and Computing. Springer publication. doi:10.1007/s11633-016-0981-7.

  25. Kumar, V., Rana, K. P. S., & Mishra, P. (2016). Robust speed control of hybrid electric vehicle using fractional order fuzzy pd & pi controllers in cascade control loop. Journal of the Franklin Institute, 353(8), 1713–1741.

    Article  MathSciNet  MATH  Google Scholar 

  26. Ladaci, S., Loiseau, J. J., & Charef, A. (2010). Adaptive internal model control with fractional order parameter. International Journal of Adaptive Control and Signal Processing, 24(11), 944–960.

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, T. H. S., & Huang, Y. C. (2010). MIMO adaptive fuzzy terminal sliding mode controller for robotic manipulators. Information Sciences, 180(23), 4641–4660.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, J., & Huang, Z. Z. (2006). A hierarchical supervisory fuzzy controller for robot manipulators with oscillatory bases. In Proceeding of IEEE International Conference on Fuzzy Systems. Canada (pp. 2400–2407)

    Google Scholar 

  29. Luo, Y., & Chen, Y. Q. (2009). Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica, 45(10), 2446–2450.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. In Advances and applications in sliding mode control systems. Studies in computational intelligence book series (Vol. 576, pp. 407–433). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-11173-5_15.

  31. Mishra, P., Kumar, V., & Rana, K. P. S. (2015). A fractional order fuzzy PID controller for binary distillation column control. Expert Systems with Applications, 42(22), 8533–8549.

    Article  Google Scholar 

  32. Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. Q. (2008). Tuning and auto-tuning of fractional order controller for industry applications. Control Engineering Practice, 16(7), 798–812.

    Article  Google Scholar 

  33. Ogata, K. (2009). Modern control engineering (5th ed.). India: Prentice Hall.

    MATH  Google Scholar 

  34. Oya, M., Wada, M., Honda, H., & Kobayashi, T. (2003). Experimental studies of a robust tracking controller for robot manipulators with position measurements with position measurements contaminated by noises. In Proceeding of 4th International Conference on Control and Automation. Montreal, Canada (pp. 664–668)

    Google Scholar 

  35. Pan, I., & Das, S. (2012). Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. Electrical Power and Energy Systems, 43(1), 393–407.

    Article  Google Scholar 

  36. Peng, T., & Woo, P. Y. (2002). Neural-fuzzy control system for robotic manipulators. IEEE Control Systems Magazine, 22(1), 53–63.

    Article  Google Scholar 

  37. Petras, I. (2009). Fractional—order feedback control of a DC motor. Journal of Electrical Engineering, 60(3), 117–128.

    Google Scholar 

  38. Rana, K. P. S., Kumar, V., Mittra, N., & Pramanik, N. (2016). Implementation of fractional order integrator/differentiator on field programmable gate array. Alexandria Engineering Journal. doi:10.1016/j.aej.2016.03.030.

  39. Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Systems with Applications, 41(9), 4274–4289.

    Article  Google Scholar 

  40. Silva, M. F., Machada, J. A. T., & Lopes, A. M. (2004). Fractional order control of a hexapod robot. Nonlinear Dynamics, 38(1–4), 417–433.

    Article  MATH  Google Scholar 

  41. Song, Z., Yi, J., Zhao, D., & Li, X. (2005). A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. Fuzzy Sets and Systems, 154(2), 208–226.

    Article  MathSciNet  MATH  Google Scholar 

  42. Tang, W., Chen, G., & Lee, R. (2001). A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Fuzzy Sets and Systems, 118(1), 109–119.

    Article  MathSciNet  Google Scholar 

  43. Tang, Y., Cui, M., Hua, C., Li, L., & Yang, Y. (2012). Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm. Expert Systems with Applications, 39(8), 6887–6896.

    Article  Google Scholar 

  44. Tian, L. F., & Collins, C. (2005). Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics, 15(10), 1305–1320.

    Article  Google Scholar 

  45. Tsai, C. H., Wang, C. H., & Lin, W. S. (2000). Robust fuzzy model-following control of robot manipulators. IEEE Transactions on Fuzzy Systems, 8(4), 462–469.

    Article  Google Scholar 

  46. Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-13132-0_2.

  47. Vaidyanathan, S., & Azar, A. T. (2015). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581, pp. 3–17). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-13132-0_1.

  48. Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.

    Google Scholar 

  49. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D Jerk System with an exponential nonlinearity. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.

    Google Scholar 

  50. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.

    Google Scholar 

  51. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.

    Google Scholar 

  52. Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.

    Google Scholar 

  53. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.

    Google Scholar 

  54. Valério, D., & Costa, J. S. D. (2013). An introduction to fractional control. London, United Kingdom: IET.

    MATH  Google Scholar 

  55. Yi, S. Y., & Chung, M. J. (1997). A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 27(4), 706–713.

    Article  Google Scholar 

  56. Yildirim, S., & Eski, I. (2010). Noise analysis of robot manipulator using neural networks. Robotics and Computer-Integrated Manufacturing, 26(4), 282–290.

    Article  Google Scholar 

  57. Zamani, M., Ghartemani, M. K., Sadati, N., & Parniani, M. (2009). Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 17(12), 1380–1387.

    Article  Google Scholar 

  58. Zhu, D., & Fang, Y. (2007). Adaptive control of parallel manipulators via fuzzy-neural network algorithm. Journal of Control Theory and Applications, 5(3), 295–300.

    Article  MathSciNet  Google Scholar 

  59. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing. (Vol. 319). Springer-Verlag: Germany. ISBN: 9783319128825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, V., Rana, K.P.S. (2017). Comparative Study on Fractional Order PID and PID Controllers on Noise Suppression for Manipulator Trajectory Control. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics