Skip to main content

Compressing Web Geodata for Real-Time Environmental Applications

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10078))

Abstract

The advent of connected mobile devices has caused an unprecedented availability of geo-referenced user-generated content, which can be exploited for environment monitoring. In particular, Augmented Reality (AR) mobile applications can be designed to enable citizens collect observations, by overlaying relevant meta-data on their current view. This class of applications rely on multiple meta-data, which must be properly compressed for transmission and real-time usage. This paper presents a two-stage approach for the compression of Digital Elevation Model (DEM) data and geographic entities for a mountain environment monitoring mobile AR application. The proposed method is generic and could be applied to other types of geographical data.

This work was partially funded by the CHEST FP7 project of the European Commission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.peakfinder.org.

  2. 2.

    Trial-and-error experiments proved that increasing the number of neighbors for the average calculation decreases the total compression rate.

References

  1. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm (1994)

    Google Scholar 

  2. Castelletti, A., Fedorov, R., Fraternali, P., Giuliani, M.: Multimedia on the mountaintop: Using public snow images to improve water systems operation. In: Proceedings of the 24rd ACM International Conference on Multimedia. ACM (2016)

    Google Scholar 

  3. Chen, R., Li, X.: Dem compression based on integer wavelet transform. Geo-Spatial Inf. Sci. 10(2), 133–136 (2007)

    Article  Google Scholar 

  4. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

    Article  Google Scholar 

  5. Deutsch, L.P.: Deflate compressed data format specification version 1.3 (1996)

    Google Scholar 

  6. Deutsch, L.P.: Gzip file format specification version 4.3 (1996)

    Google Scholar 

  7. Farr, T.G., Kobrick, M.: Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. Union 81(48), 583–585 (2000)

    Article  Google Scholar 

  8. Fedorov, R., Camerada, A., Fraternali, P., Tagliasacchi, M.: Estimating snow cover from publicly available images. IEEE Trans. Multimedia 18(6), 1187–1200 (2016)

    Article  Google Scholar 

  9. Fedorov, R., Frajberg, D., Fraternali, P.: A framework for outdoor mobile augmented reality and its application to mountain peak detection. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 281–301. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40621-3_21

    Chapter  Google Scholar 

  10. Fedorov, R., Fraternali, P., Tagliasacchi, M.: Mountain peak identification in visual content based on coarse digital elevation models. In: Proceedings of the 3rd ACM International Workshop on Multimedia Analysis for Ecological Data, pp. 7–11. ACM (2014)

    Google Scholar 

  11. Franklin, W.R., Said, A.: Lossy compression of elevation data, pp. 29–41 (1996)

    Google Scholar 

  12. Kidner, D.B., Smith, D.H.: Compression of digital elevation models by huffman coding. Comput. Geosci. 18(8), 1013–1034 (1992)

    Article  Google Scholar 

  13. Kidner, D.B., Smith, D.H.: Advances in the data compression of digital elevation models. Comput. Geosci. 29(8), 985–1002 (2003)

    Article  Google Scholar 

  14. Lewis, M., Smith, D.: Optimal predictors for the data compression of digital elevation models using the method of lagrange multipliers

    Google Scholar 

  15. Pavlov, I.: 7z format. http://www.7-zip.org/7z.html

  16. Rissanen, J., Langdon, G.G.: Arithmetic coding. IBM J. Res. Dev. 23(2), 149–162 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ruuvzika, J., Ruuvzika, K.: Impact of GDAL JPEG 2000 lossy compression to a digital elevation model, pp. 205–214 (2015)

    Google Scholar 

  18. Scarmana, G.: Lossless data compression of grid-based digital elevation models: a png image format evaluation. ISPRS Annals Photogrammetry Remote Sens. Spatial Inf. Sci. 2(5), 313 (2014)

    Article  Google Scholar 

  19. Seward, J.: bzip. 2 and libbzip. 2, version 1.0.5 a program and library for data compression (1996). http://www.bzip.org/1.0.5/bzip.2-manual-1.0.5.html#intro

  20. Sharma, M.: Compression using huffman coding. IJCSNS Int. J. Comput. Sci. Netw. Secur. 10(5), 133–141 (2010)

    Google Scholar 

  21. Shkarin, D.: PPMD-fast PPM compressor for textual data (2001)

    Google Scholar 

  22. Smith, D.H., Lewis, M.: Optimal predictors for compression of digital elevation models. Comput. Geosci. 20(7), 1137–1141 (1994)

    Article  Google Scholar 

  23. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Fedorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Cavallaro, C., Fedorov, R., Bernaschina, C., Fraternali, P. (2016). Compressing Web Geodata for Real-Time Environmental Applications. In: Satsiou, A., et al. Collective Online Platforms for Financial and Environmental Awareness. IFIN ISEM 2016 2016. Lecture Notes in Computer Science(), vol 10078. Springer, Cham. https://doi.org/10.1007/978-3-319-50237-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50237-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50236-6

  • Online ISBN: 978-3-319-50237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics