Skip to main content

Markov Switching GARCH Models: Filtering, Approximations and Duality

  • Chapter
  • First Online:

Abstract

This paper is devoted to show duality in the estimation of Markov Switching (MS) GARCH processes. It is well-known that MS GARCH models suffer of path dependence which makes the estimation step unfeasible with usual Maximum Likelihood procedure. However, by rewriting the model in a suitable state space representation, we are able to give a unique framework to reconcile the estimation obtained by filtering procedure with that coming from some auxiliary models proposed in the literature. Estimation on short-term interest rates shows the feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Augustyniak, M.: Maximum likelihood estimation of the Markov-switching GARCH model. Comput. Stat. Data Anal. 76, 61–75 (2014)

    Article  MathSciNet  Google Scholar 

  2. Augustyniak, M., Boudreault, M., Morales, M.: Maximum likelihood estimation of the Markov-switching GARCH model based on a general collapsing procedure. Methodol. Comput. Appl. Probab. 1–24 (2017). https://doi.org/doi:10.1007/s11009-016-9541-4

  3. Bauwens, L., Preminger, A., Rombouts, J.: Theory and inference for a Markov switching GARCH model. Economet. J. 13(2), 218–244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauwens, L., Dufays, A., Rombouts, J.V.: Marginal likelihood for Markov-switching and change-point GARCH models. J. Economet. 178, 508–522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billio, M., Monfort, A., Robert, C.P.: A MCMC approach to maximum likelihood estimation. In: Huskova, M., Lachout, P., Visek, J.A. (eds.) Prague Stochastics ’98, vol. 1, pp. 49–54. Union of Czach Mathematicians and Physicists, Prague (1998)

    Google Scholar 

  6. Billio, M., Monfort, A., Robert, C.P.: The simulated likelihood ratio (SLR) method. Document de Travail du CREST 9828, Paris (1998)

    Google Scholar 

  7. Billio, M., Casarin, R., Osuntuyi, A.: Efficient Gibbs sampling for Markov switching GARCH models. Comput. Stat. Data Anal. 100, 37–57 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Economet. 52, 5–59 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, J.: A Markov model of unconditional variance in ARCH. J. Bus. Econ. Stat. 12, 309–316 (1994)

    Google Scholar 

  10. Dueker, M.J.: Markov switching in GARCH processes and mean reverting stock market volatility. J. Bus. Econ. Stat. 15(1), 26–34 (1997)

    MathSciNet  Google Scholar 

  11. Francq, C., Zakoïan, J.M.: The L 2-structures of standard and switching-regime GARCH models. Stoch. Process. Appl. 115, 1557–1582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Francq, C., Roussignol, M., Zakoïan, J.M.: Conditional heteroskedasticity driven by hidden Markov chains. J. Time Ser. Anal. 22(2), 197–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gourieroux, C., Monfort, A.: Time Series and Dynamic Models. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  14. Gray, S.F.: Modelling the conditional distribution of interest rates as a regime-switching process. J. Financ. Econ. 42, 27–62 (1996)

    Article  Google Scholar 

  15. Haas, M., Mittnik, S., Paolella, M.S.: A new approach to Markov-switching GARCH models. J. Financ. Economet. 2, 493–530 (2004)

    Article  Google Scholar 

  16. Hamilton, J.D., Susmel, R.: Autoregressive conditional heteroskedasticity and changes in regime. J. Economet. 64, 307–333 (1994)

    Article  MATH  Google Scholar 

  17. Henneke, J.S., Rachev, S.T., Fabozzi, F.J., Metodi, N.: MCMC-based estimation of Markov switching ARMA–GARCH models. Appl. Econ. 43(3), 259–271 (2011)

    Article  Google Scholar 

  18. Klaassen, F.: Improving GARCH volatility forecasts with regime-switching GARCH. Empir. Econ. 27(2), 363–394 (2002)

    Article  Google Scholar 

  19. Kim, C.J.: Dynamic linear models with Markov switching. J. Economet. 64, 1–22 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, C.J., Nelson, C.R.: State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications. The MIT Press, Cambridge (1999)

    Google Scholar 

  21. Lamoureux, C.G., Lastrapes, W.D.: Persistence in variance, structural change, and the GARCH model. J. Bus. Econ. Stat. 8, 225–234 (1990)

    Google Scholar 

  22. Nelson, D.B.: Stationarity and persistence in the GARCH(1,1) model. Economet. Theory 6, 318–344 (1990)

    Article  MathSciNet  Google Scholar 

  23. Osuntuy, A.A.: Essays on bayesian inference with financial applications. PhD thesis, University Ca’ Foscari of Venice (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Billio .

Editor information

Editors and Affiliations

Appendix

Appendix

A1 We show that p t | t−1, t = p(s t | s t−1, Ψ t ) can be expressed in terms of p t | t−1, t−1 and the conditional density of ε t which depends on the current regime s t and the past regimes, i.e, f(ε t | s 1, , s t , Ψ t−1). In fact,

$$\displaystyle{\begin{array}{rcl} p_{t\vert t-1,t}& =&p(s_{t}\vert s_{t-1},\varPsi _{t}) = p(s_{t}\vert s_{1},\ldots,s_{t-1},\varPsi _{t}) = p(s_{t}\vert s_{1},\ldots,s_{t-1},\epsilon _{t},\varPsi _{t-1}) \\ & =&\frac{f(\epsilon _{t}\vert s_{1},\ldots,s_{t},\varPsi _{t-1})p(s_{t}\vert s_{1},\ldots,s_{t-1},\varPsi _{t-1})} {f(\epsilon _{t}\vert s_{1},\ldots,s_{t-1},\varPsi _{t-1})} \\ & =&\frac{f(\epsilon _{t}\vert s_{1},\ldots,s_{t},\varPsi _{t-1})p(s_{t}\vert s_{t-1},\varPsi _{t-1})} {f(\epsilon _{t}\vert s_{1},\ldots,s_{t-1},\varPsi _{t-1})} = \frac{f(\epsilon _{t}\vert s_{1},\ldots,s_{t},\varPsi _{t-1})p_{t\vert t-1,t-1}} {f(\epsilon _{t}\vert s_{1},\ldots,s_{t-1},\varPsi _{t-1})} \end{array} }$$

where \(f(\epsilon _{t}\vert s_{1},\ldots,s_{t-1},\varPsi _{t-1}) =\sum _{ s_{t}=1}^{M}\,f(\epsilon _{t}\vert s_{1},\ldots,s_{t},\varPsi _{t-1})p(s_{t}\vert s_{t-1},\varPsi _{t-1}) =\sum _{ s_{t}=1}^{M}\,f(\epsilon _{t}\vert s_{1},\ldots,s_{t},\varPsi _{t-1})\,p_{t\vert t-1,t-1}.\)

A2 We present explicit derivation of the filter for MS GARCH as given in Sect. 3. The prediction step is obtained as follows

$$\displaystyle{\begin{array}{rcl} B_{t\vert t-1}^{(i,j)} & =&E(B_{t}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i) = E(\mu _{s_{t}} + F_{s_{t}}B_{t-1} + Gv_{t}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i) \\ & =&\mu _{j} + F_{j}E(B_{t-1}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i) =\mu _{j} + F_{j}B_{t-1\vert t-1}^{i}.\end{array} }$$

In particular, we have \(B_{t} - B_{t\vert t-1}^{(i,j)}\vert _{s_{t}=j}\) = F j (B t−1B t−1 | t−1 i) + Gv t . Then

$$\displaystyle{\begin{array}{rcl} P_{t\vert t-1}^{(i,j)} & =&E[(B_{t} - B_{t\vert t-1}^{(i,j)})(B_{t} - B_{t\vert t-1}^{(i,j)})^{'}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i] \\ & =&E[(F_{j}(B_{t-1} - B_{t-1\vert t-1}^{i}) + Gv_{t})(F_{j}(B_{t-1} - B_{t-1\vert t-1}^{i}) + Gv_{t})^{'}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i] \\ & =&F_{j}E[(B_{t-1} - B_{t-1\vert t-1}^{i})(B_{t-1} - B_{t-1\vert t-1}^{i})^{'}\vert \varPsi _{t-1},s_{t-1} = i]F_{j}^{'} + GE(v_{t}^{2}\vert s_{t} = j)G^{'} \\ & =&F_{j}P_{t-1\vert t-1}^{i}F_{j}^{'} + GG^{'}\sigma _{vj}^{2}\end{array} }$$

and

$$\displaystyle{\begin{array}{rcl} \eta _{t\vert t-1}^{(i,j)} & =&y_{t} - y_{t\vert t-1}^{(i,j)} = y_{t} - E(y_{t}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i) = y_{t} - E(HB_{t}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i) \\ & =&y_{t} - HE(B_{t}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i) = y_{t} - HB_{t\vert t-1}^{(i,j)}.\end{array} }$$

Hence, \(\eta _{t\vert t-1}^{(i,j)}\vert _{\varPsi _{t-1},s_{t}=j,s_{t-1}=i} = H(B_{t} - B_{t\vert t-1}^{(i,j)}) + v_{t}\) and

$$\displaystyle{\begin{array}{rcl} f_{t\vert t-1}^{(i,j)} & =&E[(\eta _{t\vert t-1}^{(i,j)})^{2}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i)] \\ & =&E[(H(B_{t} - B_{t\vert t-1}^{(i,j)}))(H(B_{t} - B_{t\vert t-1}^{(i,j)}))^{'}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i] \\ & =&HE[(B_{t} - B_{t\vert t-1}^{(i,j)})(B_{t} - B_{t\vert t-1}^{(i,j)})^{'}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i]H^{'} = HP_{t\vert t-1}^{(i,j)}H^{'}.\end{array}}$$

Furthermore, the updating step is derived as follows. Define Z 1 = B t and Z 2 = η t | t−1 (i, j) = y t y t | t−1 (i, j). Then μ 1 = E[Z 1 | Ψ t−1, s t = j, s t−1 = i] = B t | t−1 (i, j), μ 2 = E[Z 2 | Ψ t−1, s t = j, s t−1 = i] = 0, Σ 11 = P t | t−1 (i, j) and Σ 22 = f t | t−1 (i, j). We have

$$\displaystyle{\begin{array}{rcl} \varSigma _{12} & =&cov(Z_{1},Z_{2}) = E[(B_{t} - B_{t\vert t-1}^{(i,j)})\eta _{t\vert t-1}^{(i,j)}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i] \\ & =&E[(B_{t} - B_{t\vert t-1}^{(i,j)})(B_{t} - B_{t\vert t-1}^{(i,j)})^{'}H^{'}\vert \varPsi _{t-1},s_{t} = j,s_{t-1} = i] = P_{t\vert t-1}^{(i,j)}H^{'} =\varSigma _{ 21}^{'}.\end{array}}$$

Thus \(Z_{1}\vert _{Z_{2},\varPsi _{t-1},s_{t}=j,s_{t-1}=i}\) is given by μ 1 | 2 = μ 1 + Σ 12 Σ 22 −1(Z 2μ 2), that is, B t | t (i, j) = B t | t−1 (i, j) + P t | t−1 (i, j) H [ f t | t−1 (i, j)]−1 η t | t−1 (i, j). Further, we have Σ 11 | 2 = Σ 11Σ 12 Σ 22 −1 Σ 21, hence P t | t (i, j) = P t | t−1 (i, j)K t (i, j) HP t | t−1 (i, j), where K t (i, j) = P t | t−1 (i, j) H [ f t | t−1 (i, j)]−1 is the Kalman gain.

A3 Here we derive the approximation on the line of [20] applied to model in (8), which is Eq. (9):

$$\displaystyle{\begin{array}{rcl} B_{t\vert t}^{j}& =&\frac{\sum _{i=1}^{M}B_{ t\vert t}^{(i,j)}p(s_{ t-1}=i,s_{t}=j\vert Y _{t})} {p(s_{t}=j\vert Y _{t})} =\sum _{ i=1}^{M}\frac{p(s_{t-1}=i,s_{t}=j\vert Y _{t})} {p(s_{t}=j\vert Y _{t})} B_{t\vert t}^{(i,j)} \\ & =&\sum _{i=1}^{M}p(s_{t-1} = i\vert s_{t} = j,Y _{t})\,\,B_{t\vert t}^{(i,j)} =\sum _{ i=1}^{M}p_{i,t-1\vert t,t}\,\,B_{t\vert t}^{(i,j)}. \end{array} }$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Billio, M., Cavicchioli, M. (2017). Markov Switching GARCH Models: Filtering, Approximations and Duality. In: Corazza, M., Legros, F., Perna, C., Sibillo, M. (eds) Mathematical and Statistical Methods for Actuarial Sciences and Finance . Springer, Cham. https://doi.org/10.1007/978-3-319-50234-2_5

Download citation

Publish with us

Policies and ethics