Skip to main content

Optimal Portfolio Selection for an Investor with Asymmetric Attitude to Gains and Losses

  • Chapter
  • First Online:
Mathematical and Statistical Methods for Actuarial Sciences and Finance

Abstract

The description of Cumulative Prospect Theory (CPT) includes three important parts: a value function over outcomes, v(⋅ ); a weighting function over cumulative probabilities, w(⋅ ); CPT-utility as unconditional expectation of the value function v under probability distortion w. In this paper we consider the problem of choosing an CPT-investor’s portfolio in the case of complete market. The problem of finding the optimal portfolio for CPT-investor is to maximize the unconditional expectation of the value function v under probability distortion w over terminal consumption, subject to budget constraint on initial wealth. We find the optimal payoffs for CPT-investor for the classic Black-Scholes environment assuming that there are a single lognormally distributed stock and a risk free bond. We compare the optimal payoffs of CPT-investor with the optimal payoffs of the investor that maximizes expected power utility over terminal payoffs, subject to budget constraint on initial wealth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barberis, N.C.: Thirty years of prospect theory in economics: a review and assessment. J. Econ. Perspect. 27(1), 173–196 (2013)

    Article  Google Scholar 

  2. Barberis, N.C., Huang, M.: Stocks as lotteries: the implications of probability weighting for security prices. Am. Econ. Rev. 98, 2066–2100 (2008)

    Article  Google Scholar 

  3. Bernard, C., Ghossoub, M.: Static portfolio choice under cumulative prospect theory. Math. Finan. Econ. 2, 277–306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cochrane, J.H.: Asset Pricing. Princeton University Press, Princeton (2005)

    Google Scholar 

  5. Eeckhoudt, L., Gollier, C., Schlesinger, H.: Economic and Financial Decisions Under Risk. Princeton University Press, Princeton (2005)

    Google Scholar 

  6. Gomes, F.J.: Portfolio choice and trading volume with loss-averse investors. J. Bus. 78, 675–706 (2005)

    Article  Google Scholar 

  7. Grishina, N., Lucas, C., Date, P.: Prospect theory based portfolio optimisation: an empirical study and analysis. Quant. Finan. 17, 353–367 (2017). https://doi.org/doi:10.1080/1497688.2016.1149611

    Article  Google Scholar 

  8. He, X.D., Zhou, X.Y.: Portfolio choice under cumulative prospect theory: an analytical treatment. Manag. Sci. 57(2), 315–331 (2011)

    Article  MATH  Google Scholar 

  9. Hitaj, A., Mastrogiacomo, E.: Portfolio Choice Under Cumulative Prospect Theory: Sensitivity Analysis and an Empirical Study. Working Paper (2015). http://ssrn.com/abstract=2598186

  10. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 62, 1291–1326 (1979)

    MATH  Google Scholar 

  11. Levy, H., Levy, M.: Prospect theory and mean-variance analysis. Rev. Financ. Stud. 17, 1015–1041 (2004)

    Article  Google Scholar 

  12. Nardon, M., Pianca, P.: A behavioural approach to the pricing of European options. In: Mathematical and Statistical Methods for Actuarial Sciences and Finance, pp. 219–230. Springer, Cham (2014)

    Google Scholar 

  13. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  14. Pirvu, T.A., Schulze, K.: Multi-stock portfolio optimization under prospect theory. Math. Finan. Econ. 6(4), 337–362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shi, Y., Cui, X., Li, D.: Discrete-time behavioral portfolio selection under cumulative prospect theory. J. Econ. Dyn. Control 61, 283–302 (2015)

    Article  MathSciNet  Google Scholar 

  16. Sidorov, S.P., Homchenko, A., Barabash, V.: Stochastic models for assets allocation under the framework of prospect and cumulative prospect theory. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2015 (WCE 2015), 1–3 July, 2015, London, pp. 704–709 (2015)

    Google Scholar 

  17. Tversky, A., Kahneman D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992)

    Article  MATH  Google Scholar 

  18. Zakamouline, V., Koekebakker, S.: A generalisation of the mean-variance analysis. Eur. Financ. Manag. 15, 934–970 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Fund for Basic Research under Grant 16-01-00507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Mironov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sidorov, S., Khomchenko, A., Mironov, S. (2017). Optimal Portfolio Selection for an Investor with Asymmetric Attitude to Gains and Losses. In: Corazza, M., Legros, F., Perna, C., Sibillo, M. (eds) Mathematical and Statistical Methods for Actuarial Sciences and Finance . Springer, Cham. https://doi.org/10.1007/978-3-319-50234-2_13

Download citation

Publish with us

Policies and ethics