Skip to main content

Biogas and Fuel Cell as Vehicular Fuel in India

  • Chapter
  • First Online:
Sustainable Biofuels Development in India

Abstract

There is a worldwide concern due to the fact that the rate of consumption of fossil fuels by far exceeds the rate of their formation. This has stimulated researchers to look into economically viable and more environmentally friendly alternatives such as biogas, fuel cells, etc. Development of technologies for utilisation of such fuels for the transport sector is in rapid progress worldwide. Utilisation of biogas is quite popular as cooking fuel in rural India and China. Various efforts were also made on utilisation of biogas as vehicular fuel in India. In this chapter, a review on various factors influencing the performance of biogas digester and functionalities of fuel cells and its application as vehicle fuel has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC (2013) Summary for policymakers. In: IPCC special report on renewable energy sources and climate change mitigation

    Google Scholar 

  2. IEA (2010) Energy technologies perspectives: scenarios and strategies to 2050. International Energy Agency, Paris, p. 710

    Google Scholar 

  3. Myles RM (1985) Practical guide to Janata biogas plant technology. AFPRO Action Food Production, New Delhi

    Google Scholar 

  4. Steffen R (2000) Feed stock for anaerobic digestion. Making energy and solving modern waste problem. www.adnett.org

    Google Scholar 

  5. Yadvika (2004) Enhancement of biogas production from solid substrates using different technique. Bioresour Technol 95:1–10

    Article  CAS  PubMed  Google Scholar 

  6. Gerardi M (2003) The microbiology of anaerobic digesters. Waste water microbiology series. Wiley, New York

    Book  Google Scholar 

  7. Kapdi SS (2004) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 4:1–8

    Google Scholar 

  8. Fehrenbach H (2008) Criteria for a sustainable use of bioenergy on a global scale. UBA-Forschungsbericht 206:41–112

    Google Scholar 

  9. Kratzeisen M (2010) Applicability of biogas digestate as solid fuel. Fuel 89:2544–2548

    Article  CAS  Google Scholar 

  10. Public consultation on the implementation of the renewed strategy to reduce CO2 missions from passenger cars and light-commercial vehicles. European Natural Gas Vehicle Response 15 July 2007

    Google Scholar 

  11. Ostrem KM (2004) Combining anaerobic digestion and waste-to energy. 12th North America waste to energy Conference

    Google Scholar 

  12. Jarvis A (2004) Biogas: renewable energy from organic waste. Swedish Biogas Association, Stockholm. www.sbgf.org

  13. Mata-alvarez J, Mace S, Liabres O (2000) Anaerobic digestion of organic solid wastes an overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  14. Ramchandra P, Sameer M, Shishupal S, Phool SB et al (2006) SB field evaluation of biogas technology in India. Energy Technology Division, Tata Energy Research Institute, New Delhi

    Google Scholar 

  15. NAS (1977) Methane generation from human, animal and agricultural wastes, Report of an Ad. Hoc. panel of the advisory committee on technology innovation. National Academy of Science, Washington, DC

    Google Scholar 

  16. Bahadur S, Singh KK (1978) Janata biogas plants. Planning research and action division. State Planning Institute, Lucknow

    Google Scholar 

  17. Mahanta P, Saha UK, Dewan A, Kalita P, Buragohain B et al (2005) Biogas digester: a discussion on factors affecting biogas production and field investigation of a novel duplex digester. SESI J 15:1–12

    Google Scholar 

  18. Barnett A (1978) Biogas technology in the third world: a multidisciplinary review. IDRC, Ottawa, p. 51

    Google Scholar 

  19. Fry LJ, Merrill R (1973) Methane digesters for fuel gas and fertilizer, Newsletter No. 3. New Alchemy Institute, Santa Cruz

    Google Scholar 

  20. Gotass HB (1965) Composting. World Health Organisation, Geneva

    Google Scholar 

  21. Kexin L (1979) Fermentative technology of Chinese rural digester. Bio-Energy Laboratory, Chengdu Institute of Biology, Acadeemia Sinica

    Google Scholar 

  22. Homan E (1979) Biogas from manure, special circular 260, college of agriculture extension service. Pennsylvania State University, State College, PA

    Google Scholar 

  23. SPOBD (1979) Biogas technology and utilization, Chengdu seminar, Sichuan provincial office of biogas development, Sichuan

    Google Scholar 

  24. Neelakanthan S (1976) Effect of temperature, inoculum and agitation on biogas production from cattle dung. Indian J Dairy Sci 29:226–229

    Google Scholar 

  25. Kopiske G, Eggersgliib H, Strub A, Charter P, Schleser G et al (1982) Energy from biomass. In: Proceeding EC conference. Applied Science Publishers, London, pp 591–594

    Google Scholar 

  26. Bansal NK (1985) A study of greenhouse concept on conventional biogas system for enhancing biogas yield in winter months. Energy Res 9:119–128

    Article  Google Scholar 

  27. Bansal NK (1988) A techno-economic assessment of solar-assisted biogas systems. Energy Res 10:216

    Google Scholar 

  28. Mahanta P, Dewan A, Saha UK, Kalita P (2004) Effect of temperature and agitation on the performance of biogas digesters. 2nd BSME- ASME International Conference on Thermal Engineering 2–4 Jan 2004, Dhaka

    Google Scholar 

  29. Augenstein DC, Wise DL, Wentworth RL, Cooney CL et al (1976) Fuel gas recovery from controlled landfill of municipal wastes. Resour Recover Conserv 2:103

    Article  CAS  Google Scholar 

  30. Gore JA et al (1981) More gas from gobar gas plants, Indian farming, March

    Google Scholar 

  31. Mahanta P, Dewan A, Saha UK, Kalita P et al (2004) The influence of temperature and total solids concentration on the gas production rate of biogas digester. J Energy Southern Africa 15:112–117

    Google Scholar 

  32. Suhirman, RM (2000) Biogas production from rice straw and clitoria tiernatea. In: Wise DL (ed) Global bioconversions, vol IV. CRC Press, Boca Raton, FL, pp 177–188

    Google Scholar 

  33. TERI (1987) Fixed dome biogas plants: a design, construction and operation manual. TERI, New Delhi

    Google Scholar 

  34. Moharao GJ (1975) Aspects of night soil digestion, sewage farming and fish culture, A working paper, All India Institute of Hygiene and Public Health

    Google Scholar 

  35. Moharao GJ (1974) Scientific aspects of cow dung digestion. Khadi Gramodyog 20(7):340–347

    Google Scholar 

  36. Srivastava VJ, Chynoweth DP (1987) Kinetic analysis of bio-gasification of biomass, waste blend and its engineering, significant energy from biomass and wastes. Elesevier, pp 1021–1034

    Google Scholar 

  37. Langrage B (1979) Biomethane 2: principles—technique utilization”. EDISUD, La Calade, 13100 Aix-en-Provence, France

    Google Scholar 

  38. UN (1980) Guidebook on biogas development: 99. United Nation, New York

    Google Scholar 

  39. Boodoo A, Delaitre C, Preston TR (1979) The effect of retention time on biogas production from slurry produced by cattle fed sugarcane, Mauritius

    Google Scholar 

  40. Ladine RC, Cocci AA, Viraraghavan T, Brown GJ (1982) Anaerobic pretreatment of potato processing wastewater—a case history. In: Bell JM (ed) Proceedings of the 36th industrial wastes conference. Ann Arbor Science, Ann Arbor, MI, p 233

    Google Scholar 

  41. The Biogas technology in China (1989) Chengdu biogas research institute, Chengdu

    Google Scholar 

  42. Coppinger ER (1979) The operation of a 50,000 gallon anaerobic digester at the monroe state dairy farm, Ecotope Group, 2332. East Madison, Settle, WA

    Google Scholar 

  43. Kumar S (1987) Note on stimulation of biogas production from cattle dung by addition of charcoal. Biol Wastes 20:209–215

    Article  CAS  Google Scholar 

  44. Madamwar DB, Mithal BM (1986) Effect of pectin on anaerobic digestion of cattle dung. Biotechnol Bioeng 28(4):624–626

    Article  CAS  PubMed  Google Scholar 

  45. Geeta GS, Raghavendra S, Reddy TKR et al (1986) Increase of biogas production from Bovine Excreta by addition of various inert materials. Agric Wastes 17:153–156

    Article  CAS  Google Scholar 

  46. Prasad CR (1985) Utilization of organic wastes in biogas plant. Khadi Gramodyog:514–518

    Google Scholar 

  47. Glaub JC, and Digz LF, (1981) Biogas purification processes. Biogas and alcohol fuels production, vol II. Biocycle Journal of Waste Recycling. JP Press, Emmous

    Google Scholar 

  48. Biogas Forum India (2012) BiGFIN, E-Newsletter Vol III, 3, June 2012.

    Google Scholar 

  49. Biogas and bio syngas upgrading, Danish technical institute, December 2012 (Report)

    Google Scholar 

  50. Mital KM (1997) Biogas systems: policies, progress and prospects. New Age International (P) Ltd, New York

    Google Scholar 

  51. HEL, why anaerobic digestion of ferm wastes? Hamworthy Engineering Ltd, Fleet Corner, Poole, Dorset BH 17 7LA, UK

    Google Scholar 

  52. Jonsson O, Persson M (2003) Biogas as transportation fuel. FVS Fachtagung. http://www.fvee.de/fileadmin/publikationen/Workshopbaende/ws2003-2/ws2003-2_02_04.pdf

  53. Owe J (2006) Market development for biogas as vehicle fuel in Europe—status 2006.

    Google Scholar 

  54. Pål B, Berglund M (2006) Environmental systems analysis of biogas systems—part I: fuel-cycle emissions. Biomass Bioenerg 30:469–485

    Article  Google Scholar 

  55. Von Mitzlaff K (1988) Engines for biogas, a publication of Deutsches Zentrum fur Entwicklungstecknologien, GATE, p 132, Isbn 3528020326

    Google Scholar 

  56. Duc PM, Wattanavichien K et al (2007) Study on biogas premixed charge diesel dual fuelled engine. Energy Convers Manage 48:2286–2308

    Article  CAS  Google Scholar 

  57. Cacua K, Amell A, Cadavid F et al (2012) Effects of oxygen enriched air on the operation and performance of a diesel, biogas dual fuel engine. Biomass Bioenerg 45:159–167

    Article  CAS  Google Scholar 

  58. Nathan SS, Mallikarjuna JM, Ramesh A et al (2010) An experimental study of the bio-gasediesel HCCI mode of engine operation. Energy Convers Manage 51:1347–1353

    Article  Google Scholar 

  59. Demirbas A (2006) Biogas production from the organic fraction of municipal solid waste. Energy Sources Part A 28:1127–1134

    Article  CAS  Google Scholar 

  60. Karim GA (1983) The dual fuel engine of the compression ignition type e prospects, problems and solutions: a review. SAE paper 831073

    Google Scholar 

  61. Karim GA (2003) Combustion in gas fueled compression ignition engines of the dual fuel type. ASME J Eng Gas Turbines Power 125:827–836

    Article  CAS  Google Scholar 

  62. How to use biogas to power your vehicle. http://energyzedworld.com/how-to-use-biogas-to-power-your-vehicle/

  63. Papacz W (2011) Biogas as vehicle fuel. J Kones Powertrain Transp 18:1

    Google Scholar 

  64. Svensén B (2008) Biomethane as vehicle fuel: experiences from the biogas west project: Business Region Göteborg

    Google Scholar 

  65. Henham A, Makkar M (1998) Combustion of simulated biogas in a dual-fuel diesel engine. Energy Convers Manage 39:2001–2009

    Article  CAS  Google Scholar 

  66. Yoon SH, Lee CS (2011) Experimental investigation on the combustion and exhaust emission characteristics of biogas – biodiesel dual-fuel combustion in a CI engine. Fuel Process Technol 92:992–1000

    Article  CAS  Google Scholar 

  67. Walsh JL, Ross CC, Smith MS, Harper SR et al (1989) Utilization of biogas. Biomass 20:277–290

    Article  CAS  Google Scholar 

  68. Bari S (1996) Effect of carbon dioxide on the performance of biogas/diesel dual-fuel engine. Renew Energy 9:1007–1010

    Article  CAS  Google Scholar 

  69. Bedoya ID, Saxena S, Cadavid FJ, Dibble RJ et al (2012) Exploring strategies for reducing high intake temperature requirements and allowing optimal operational conditions in a biogas fuelled HCCI engine for power generation. ASME J Eng Gas Turbines Power 134:1–9

    Article  Google Scholar 

  70. Sahoo, BB (2011) Clean development mechanism potential of compression ignition diesel engines using gaseous fuels in dual fuel mode. PhD thesis. Centre for Energy, IIT Guwahati, India

    Google Scholar 

  71. Ganeshan V (2012) Internal combustion engines, 4th edn. Tata McGraw Hill Education Private Limited, New Delhi

    Google Scholar 

  72. Chengqiu J, Tianwei L, Jianli Z et al (1989) A study on compressed biogas and its application to the compression ignition dual-fuel engine. Biomass 20:53–59

    Article  Google Scholar 

  73. Upgraded bottled biogas a green and low-cost fuel for automobiles in India. http://mnre.gov.in/file-manager/akshay-urja/march-april-2014/EN/20-23.pdf

  74. Appleby AJ (1996) Fuel cell technology: status and future prospects. Energy 21(7):521–653

    Article  CAS  Google Scholar 

  75. Haile SM (2003) Fuel cell materials and components. Acta Mater 51(19):5981–6000

    Article  CAS  Google Scholar 

  76. Williams MC (2000) Fuel cell handbook. US Department of Energy, Morgantown

    Google Scholar 

  77. Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology, applications. Wiley, West Sussex

    Google Scholar 

  78. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007

    Article  CAS  Google Scholar 

  79. Wind J, Spдh R, Kaiser W, Bцhm G (2002) Metallic bipolar plate for PEM fuel cell. J Power Sources 105:256–260

    Article  CAS  Google Scholar 

  80. Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for PEM fuel cells. J Power Sources 109:71–75

    Article  CAS  Google Scholar 

  81. Scholta J, Rohland B, Trapp V, Focken U (1999) Investigation on novel low-cost graphite composite bipolar plate. J Power Source 84:231–234

    Article  CAS  Google Scholar 

  82. Tsuchiya H, Kobayashi O (2004) Mass production cost of PEM fuel cell by learning curve. Int J Hydrog Energy 29:985–990

    Article  CAS  Google Scholar 

  83. Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrog Energy 30:359–371

    Article  CAS  Google Scholar 

  84. Mehta V, Cooper SJ (2003) Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114(1):32–53

    Article  CAS  Google Scholar 

  85. Busick D, Wilson M (2000) Development of composite materials for PEFC bipolar plates. Mat Res Soc Symp Proc 575:247–251

    Article  CAS  Google Scholar 

  86. Heinzel A, Mahlendorf F, Niemzig O, Kreuz C (2004) Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 131:35–40

    Article  CAS  Google Scholar 

  87. Yuan XZ, Wang H, Zhang J, Wilkinson DP (2005) Bipolar plates for PEM fuel cell—from material to processing. J Mat Electr Sys 8:257–267

    CAS  Google Scholar 

  88. Borup RL, Vanderborgh NE (1995) Design and testing criteria for bipolar plate materials for PEM fuel cell application. Mat Res Soc Symp Proc 393:151–155

    Article  CAS  Google Scholar 

  89. Hermann A, Chaudhuria T, Spagnolb P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30:1297–1302

    Article  CAS  Google Scholar 

  90. Borup R et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  PubMed  Google Scholar 

  91. Cunningham B, Baird DG (2006) The development of economical bipolar plates for fuel cells. J Mater Chem 16:4385–4388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kalita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kalita, P., Borah, M., Kataki, R., Yadav, D., Patowary, D., Patowary, R. (2017). Biogas and Fuel Cell as Vehicular Fuel in India. In: Chandel, A., Sukumaran, R. (eds) Sustainable Biofuels Development in India. Springer, Cham. https://doi.org/10.1007/978-3-319-50219-9_5

Download citation

Publish with us

Policies and ethics