Catalysis Inside Folded Single Macromolecules in Water

  • Müge Artar
  • Anja R. A. Palmans
Part of the Fundamental and Applied Catalysis book series (FACA)


Enzymes are dynamic, folded macromolecules with a perfectly defined three-dimensional structure that is highly active and selective in converting substrates into products. In contrast, synthetic polymers typically adopt random coil conformations in dilute solution or, in poor solvents, dense globular structures. Yet, the capability to control the global conformation of a synthetic polymer opened up many new applications that result from a three-dimensional structure. In recent years, a novel class of polymers, dynamic single-chain polymeric nanoparticles (SCPNs), were developed to control global conformations of synthetic polymers. SCPNs result from the thermodynamically controlled folding of synthetic polymers via directional interactions encoded in pendant supramolecular motifs. This marriage between polymer chemistry and supramolecular chemistry afforded a series of compartmentalised, nanometre-sized polymeric particles, which were studied in detail. In this review, we address the folding of an amphiphilic polymer in water around a catalytic centre. We highlight recent results obtained in oxidations, reductions and C–C bond forming reactions with these SCPNs. In addition, we will discuss the benefits of the ordered hydrophobic interior in the SCPNs to achieve selective catalysis in water.


Size Exclusion Chromatography Star Polymer Amphiphilic Polymer Reaction Space Control Radical Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    (a) Wu C, Wang X (1998) Globule-to-coil transition of a single homopolymer chain in solution. Phys Rev Lett 80:4092–4094; (b) Fetters LJ, Hadjichristis N et al (1994) Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution. J Phys Chem Rev Data 23:619–638Google Scholar
  2. 2.
    (a) Nakano T, Okamoto Y (2001) Synthetic helical polymers: conformation and function. Chem Rev 101:4013–4038; (b) Hill DJ, Mio MJ et al (2001) A field guide to foldamers. Chem Rev 101:3893–4011Google Scholar
  3. 3.
    (a) Yashima E, Maeda K et al (2009) Helical polymers: synthesis, structures, and functions. Chem Rev 109:6102–6211; (b) Yashima E, Maeda K (2008) Chirality-responsive helical polymers. Macromolecules 41:3–12; (c) Yamamoto T, Yamada T et al (2010) High-molecular weight polyquinoxaline-based helically chiral phosphine (PQXphos) as chirality-switchable, reusable, and highly enantioselective monodentate ligand in catalytic asymmetric hydrosilylation of styrenes. J Am Chem Soc 132:7899–7900; (d) Wang H, Li N et al (2015) Synthesis and properties of a novel Cu(II)-pyridineoxazoline containing polymeric catalyst for asymmetric Diels-Alder reaction. RSC Adv 5:2882–2890Google Scholar
  4. 4.
    (a) Mecerreyes D, Lee V, Hawker CJ et al (2001) A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution. Adv Mater 13:204–208; (b) Harth E, van Horn B et al (2002) A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J Am Chem Soc 124:8653–8660; (c) Croce TA, Hamilton SK et al (2007) Alternative o-quinodimethane cross-linking precursors for intramolecular chain collapse nanoparticles. Macromolecules 40:6028–6031; (d) Cherian AE, Sun FC et al (2007) Formation of nanoparticles by intramolecular cross-linking: following the reaction progress of single polymer chains by atomic force microscopy. J Am Chem Soc 129:11350–11351; (e) de Luzuriaga AR, Ormategui N et al (2008) Intramolecular click cycloaddition: an efficient room-temperature route towards bioconjugable polymeric nanoparticles. Macromol Rapid Commun 29:1156–1160; (f) Beck JB, Killops KL et al (2009) Facile preparation of nanoparticles by intramolecular cross-linking of isocyanate functionalized copolymers. Macromolecules 42:5629–5635; (g) Zhu B, Ma J et al (2001) Formation of polymeric nanoparticles via Bergman cyclization mediated intramolecular chain collapse. J Mater Chem 21:2679–2683; (h) He J, Tremblay L et al (2011) Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter 7:2380–2386; (k) Ormategui N, García I et al (2012) Synthesis of single chain thermoresponsive polymer nanoparticles. Soft Matter 8:734–740; (i) Dirlam PT, Kim HJ et al (2013) Single chain polymer nanoparticles via sequential ATRP and oxidative polymerization. Polym Chem 4:3765–3773; (k) Altintas O, Willenbacher J et al (2013) A mild and efficient approach to functional single-chain polymeric nanoparticles via photoinduced Diels-Alder ligation. Macromolecules 46:8092–8101; (l) Perez-Baena I, Asenjo-Sanz I et al (2014) Efficient route to compact single-chain nanoparticles: photoactivated synthesis via thiol-yne coupling reaction. Macromolecules 47:8270–8280; (m) Roy RK, Lutz J-F (2014) Compartmentalization of single polymer chains by stepwise intramolecular cross-linking of sequence-controlled macromolecules. J Am Chem Soc 136:12888–12891; (n) Frank PG, Tuten BT et al (2014) Intra-chain photodimerization of pendant anthracene units as an efficient route to single-chain nanoparticle fabrication. Macromol Rapid Commun 35:249–253; (o) Wong EHH, Qiao GC (2015) Factors influencing the formation of single-chain polymeric nanoparticles prepared via ring-opening polymerization. Macromolecules 48:1371–1379; (p) Jeong J, Lee Y-J et al. (2015) Colored single-chain polymeric nanoparticles via intramolecular copper phthalocyanine formation. Polym Chem 6:3392–3397Google Scholar
  5. 5.
    (a) Murray BS, Fulton DA (2011) Dynamic covalent single-chain polymer nanoparticles. Macromolecules 44:7242–7252; (b) Tuten BT, Chao D et al (2012) Single-chain polymer nanoparticles via reversible disulfide bridges. Polym Chem 3:3068–3071; (c) Whitaker DE, Mahon CS et al (2013) Thermoresponsive dynamic covalent single-chain polymer nanoparticles reversibly transform into a hydrogel. Angew Chem Int Ed 52:956–959; (d) Sanchez-Sanchez A, Fulton DA et al (2014) pH-responsive single-chain polymer nanoparticles utilising dynamic covalent enamine bonds. Chem Commun 50:1871–1873Google Scholar
  6. 6.
    (a) Ghosh S, Ramakrishnan S (2005) Small-molecule-induced folding of a synthetic polymer. Angew Chem 117:5577–5583; (b) Seo M, Beck JB et al (2008) Polymeric nanoparticles via noncovalent cross-linking of linear chains. Macromolecules 41:6413–6418; (c) Foster EJ, Berda EB et al (2009) Metastable supramolecular polymer nanoparticles via intramolecular collapse of single polymer chains. J Am Chem Soc 131:6964–6966. (d) Mes T, van der Weegen R et al (2011) Single-chain polymeric nanoparticles by stepwise folding. Angew Chem Int Ed 50:5085–5089; (e) Appel EA, del Barrio J et al (2012) Metastable single-chain polymer nanoparticles prepared by dynamic cross-linking with nor-seco-cucurbit 10 uril. Chem Sci 3:2278–2281. (f) Altintas O, Lejeune E et al (2012) Bioinspired dual self-folding of single polymer chains via reversible hydrogen bonding. Polym Chem 3:640–651; (g) Stals PJM, Gillissen MAJ et al (2013) The balance between intramolecular hydrogen bonding, polymer solubility and rigidity in single-chain polymeric nanoparticles. Polym Chem 4:2584–2597; (h) Stals PJM, Li Y et al (2013) How far can we push polymer architectures? J Am Chem Soc 135:11421–11424; (i) Gillissen MAJ, Voets IK et al (2012) Single chain polymeric nanoparticles as compartmentalised sensors for metal ions. Polym Chem 3:3166–3174; (j) Hosono N, Gillissen MAJ et al (2013) Orthogonal self-assembly in folding block copolymers J Am Chem Soc 135:501–510; (k) ter Huurne GM, Gillissen MAJ et al (2015) The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structure. Macromolecules 48:3949–3956; (l) Wang F, Pu H et al (2015) From single-chain folding to polymer nanoparticles via intramolecular quadruple hydrogen-bonding interaction. J Polym Sci A Polym Chem 53:1832–1840Google Scholar
  7. 7.
    (a) Altintas O, Barner-Kowollik C (2012) Single chain folding of synthetic polymers by covalent and non-covalent interactions: current status and future perspectives. Macromol Rapid Commun 33:958–971. (b) Sanchez-Sanchez A, Perez-Baena I et al (2013) Advances in click chemistry for single-chain nanoparticle construction. Molecules 18:3339–3355; (c) Lyon CK, Prasher AAM et al (2015) A brief user’s guide to single-chain nanoparticles. Polym Chem 6:181–197; (d) Gonzalez-Burgos M, Latorre-Sanchez A, Pomposo JA (2015) Advances in single chain technology. Chem Soc Rev 44:6122–6142; (e) Artar M, Huerta E, Meijer EW, Palmans ARA (2014) In: Lutz JF, Meyer TY, Ouchi M, Sawamoto M (eds) Sequence-controlled polymers: synthesis, self-assembly, and properties. American Chemical Society, Washington, DC, pp 313–325; (f) Altintas O, Barner-Kowollik C (2015) Single-chain folding of synthetic polymers: a critical update. Macromol Rapid Commun 37:29–46; (g) Mavila S, Eivgi O, Berkovich I, Lemcoff NG (2016) Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles. Chem Rev 116:878–961Google Scholar
  8. 8.
    (a) Bosman AW, Vestberg R et al (2003) A modular approach toward functionalized three-dimensional macromolecules: from synthetic concepts to practical applications. J Am Chem Soc 125:715–728. (b) Wulff G, Chong BO (2006) Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes. Angew Chem Int Ed 45:2955–2958; (c) Perez-Baena I, Barroso-Bujans F et al (2013) Endowing single-chain polymer nanoparticles with enzyme-mimetic activity. ACS Macro Lett 2:775–779; (d) Sanchez-Sanchez A, Arbe A et al (2015) Metallo-folded single-chain nanoparticles with catalytic selectivity. ACS Macro Lett 3:439–443; (e) Mavila S, Rozenberg I et al (2014) A general approach to mono- and bimetallic organometallic nanoparticles. Chem Sci 5:4196–4203; (f) Willenbacher J, Altintas O et al (2015) Pd-complex driven formation of single-chain nanoparticles. Polym Chem 6:4358–4365; (g) Sanchez-Sanchez A, Arbe A, Kohlbrecher J, Colmenero J, Pomposo JA (2015) Efficient synthesis of single-chain globules mimicking the morphology and polymerase activity of metalloenzymes. Macromol Rapid Commun 6:1592–1597Google Scholar
  9. 9.
    Gillissen MAJ, Meijer EW, Voets IK, Palmans ARA (2012) Single chain polymeric nanoparticles as compartmentalised sensors for metal ions. Polym Chem 3:3166–3174Google Scholar
  10. 10.
    Perez-Baena I, Loinaz I, Padro D et al (2010) Single-chain polyacrylic nanoparticles with multiple Gd(III) centres as potential MRI contrast agents. J Mater Chem 20:6916–6922CrossRefGoogle Scholar
  11. 11.
    van Roekel HWH, Stals PJM et al (2013) Evaporative self-assembly of single-chain, polymeric nanoparticles. Chem Commun 49:3122–3124CrossRefGoogle Scholar
  12. 12.
    Altintas O, Gerstel P et al (2010) Single chain self-assembly: preparation of α, ω-donor-acceptor chains via living radical polymerization and orthogonal conjugation. Chem Commun 46:6291–6293CrossRefGoogle Scholar
  13. 13.
    Altintas O, Rudolph T et al (2011) Single chain self-assembly of well-defined heterotelechelic polymers generated by ATRP and click chemistry revisited. J Polym Sci A Polym Chem 49:2566–2576CrossRefGoogle Scholar
  14. 14.
    Romulus J, Weck M (2013) Single-chain polymer self-assembly using complementary hydrogen bonding units. Macromol Rapid Commun 34:1518–1523CrossRefGoogle Scholar
  15. 15.
    Smulders MMJ, Schenning APHJ et al (2008) Insight into the mechanisms of cooperative self-assembly: the “sergeants-and-soldiers” principle of chiral and achiral C 3-symmetrical discotic triamides. J Am Chem Soc 130:606–611CrossRefGoogle Scholar
  16. 16.
    Hosono N, Palmans ARA et al (2014) ”Soldier-sergeant-soldier” triblock copolymers: revealing the folded structure of single-chain polymeric nanoparticles. Chem Commun 50:7990–7993CrossRefGoogle Scholar
  17. 17.
    Hosono N, Stals PJM et al (2014) Consequences of block sequence on the orthogonal folding of triblock copolymers. Chem Asian J 9:1099–1107CrossRefGoogle Scholar
  18. 18.
    Terashima T, Mes T et al (2011) Single-chain folding of polymers for catalytic systems in water. J Am Chem Soc 133:4742–4746CrossRefGoogle Scholar
  19. 19.
    Gillissen MAJ, Terashima T et al (2013) Sticky supramolecular grafts stretch single polymer chains. Macromolecules 46:4120–4125CrossRefGoogle Scholar
  20. 20.
    Stals PJM, Gillissen MAJ et al (2014) Folding polymers with pendant hydrogen bonding motifs in water: the effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticles. Macromolecules 47:2947–2954CrossRefGoogle Scholar
  21. 21.
    Artar M, Terashima T et al (2014) Understanding the catalytic activity of single-chain polymeric nanoparticles in water. J Polym Sci A Polym Chem 52:12–20CrossRefGoogle Scholar
  22. 22.
    Nakano Y, Hirose T et al (2012) Conformational analysis of supramolecular polymerization processes of disc-like molecules. Chem Sci 3:148–155CrossRefGoogle Scholar
  23. 23.
    Huerta E, van Genabeek B et al (2014) A modular approach to introduce function into single-chain polymeric nanoparticles. Macromol Rapid Commun 35:1320–1325CrossRefGoogle Scholar
  24. 24.
    (a) Terashima T, Ouchi M, Ando T et al (2011) Transfer hydrogenation of ketones catalyzed by PEG-armed ruthenium-microgel star polymers: microgel-core reaction space for active, versatile and recyclable catalysis. Polym J 43:770–777; (b) Terashima T, Ouichi M, AndoT et al (2010) Thermoregulated phase-transfer catalysis via PEG-armed Ru(II)-bearing microgel core star polymers: efficient and reusable Ru(II) catalysts for aqueous transfer hydrogenation of ketones. J Polym Sci A Polym Chem 48:373–379; (c)Terashima T, Ouchi M et al (2011) Oxidation of sec-alcohols with Ru(II)-bearing microgel star polymer catalysts via hydrogen transfer reaction: unique microgel-core catalysis. J Polym Sci A Polym Chem 49:1061–1069Google Scholar
  25. 25.
    (a) Helms B, Guillaudeu SJ, Xie Y et al (2005) One-pot reaction cascades using star polymers with core-confined catalysts. Angew Chem Int Ed 44:6384–6387; (b) Chi Y, Scroggins ST, Frechet JMJ (2008) One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J Am Chem Soc 130:6322–6323Google Scholar
  26. 26.
    (a) Liang C, Fréchet JMJ (2005) Applying key concepts from nature: transition state stabilization, pre-concentration and cooperativity effects in dendritic biomimetics. Prog Polym Sci 30:385–402; (b) Kofoed J, Reymond J-L (2005) Dendrimers as artificial enzymes. Curr Opin Chem Biol 9:656–664; (c) Dwars T, Paetzold E et al (2005) Reactions in micellar systems. Angew Chem Int Ed 44:7174–7199; (d) Kirkorian K, Ellis A et al (2012) Catalytic hyperbranched polymers as enzyme mimics: exploiting the principles of encapsulation and supramolecular chemistry. Chem Soc Rev 41:6138–6159Google Scholar
  27. 27.
    Liu Y, Wang Y et al (2011) Shell cross-linked micelle-based nanoreactors for the substrate-selective hydrolytic kinetic resolution of epoxides. J Am Chem Soc 133:14260–14263CrossRefGoogle Scholar
  28. 28.
    (a) Ge Z, Xie D et al (2007) Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity. Macromolecules 40:3538–3546; (b) Lu A, Cotanda P et al (2012) Aldol reactions catalyzed by l-proline functionalized polymeric nanoreactors in water. Chem Commun 48:9699–9701; (c) van Oers MCM, Abdelmohsen LKEA et al (2014) Aqueous asymmetric cyclopropanation reactions in polymersome membranes. Chem Commun 50:4040–4042; (d) Cardozo AF, Julcour C et al (2015) Aqueous phase homogeneous catalysis using core-shell nanoreactors: application to rhodium catalyzed hydroformylation of 1-octene. J Catal 324:1–8Google Scholar
  29. 29.
    (a) Berdugo C, Miravet JF et al (2013) Substrate selective catalytic molecular hydrogels: the role of the hydrophobic effect. Chem Commun 49:10608–10610; (b) Haimov A, Neumann R (2006) An example of lipophiloselectivity:  the preferred oxidation, in water, of hydrophobic 2-alkanols catalyzed by a cross-linked polyethyleneimine–polyoxometalate catalyst assembly. J Am Chem Soc 128:15697–15700; (c) Moore BL, Moatsou D et al (2014) Studying the activity of the MacMillan catalyst embedded within hydrophobic cross-linked polymeric nanostructures. Polym Chem 5:3487–3494; (d) Lu A, Moatsou D (2014) Recyclable l-proline functional nanoreactors with temperature-tuned activity based on core-shell nanogels. ACS Macro Lett 3:1235–1239Google Scholar
  30. 30.
    (a) Huerta E, van Genabeek B et al (2015) Triggering activity of catalytic rod-like supramolecular polymers. Chem Eur J 21:3682–3690; (b) Neumann LN, Baker MB et al (2015) Supramolecular polymers for organocatalysis in water. Org Biomol Chem 13:7711–7719Google Scholar
  31. 31.
    (a) Bosman AW, Janssen HM et al (1999) About dendrimers: structure, physical properties and applications. Chem Rev 99:1665–1688; (b) Grayson SM, Fréchet JMJ et al (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3868; (c) Helms B, Meijer EW et al (2006) Dendrimers at work. Science 313:929–930; (d) Yu J, RajanBabu TV et al (2008) Conformationally driven asymmetric induction in a catalytic dendrimer. J Am Chem Soc 130:7845–7847Google Scholar
  32. 32.
    (a) Frenzel T, Solodenko W, Kirschning A (2003) In: Buchmeiser MR (ed) Polymeric materials in organic synthesis and catalysis. Wiley-VCH, Weinheim, pp 201–240; (b) Dickerson TJ, Reed NN et al (2002) Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem Rev 102:3325–3344; (c) Helms B, Fréchet JMJ (2006) The dendrimer effect in homogeneous catalysis. Adv Synth Catal 348:1125–1148Google Scholar
  33. 33.
    Huerta E, Stals PJM et al (2013) Consequences of folding a water-soluble polymer around an organocatalyst. Angew Chem Int Ed 52:2906–2910CrossRefGoogle Scholar
  34. 34.
    Eberhardt M, Mruk R et al (2005) Postpolymerization modification of poly(pentafluorophenyl methacrylate): synthesis of a diverse water-soluble polymer library. Eur Polym J 41:1569–1575CrossRefGoogle Scholar
  35. 35.
    Liu Y, Pauloehrl T et al (2015) A modular synthetic platform for the construction of functional single-chain polymeric nanoparticles: from aqueous catalysis to photo-sensitization. J Am Chem Soc 137:13096–13105CrossRefGoogle Scholar
  36. 36.
    Artar M, Souren ERJ et al (2015) Single chain polymeric nanoparticles as selective hydrophobic reaction spaces in water. ACS Macro Lett 4:1099–1103CrossRefGoogle Scholar
  37. 37.
    Murahashi SI, Naota T et al (1993) Ruthenium-catalyzed oxidations for selective syntheses of ketones and acyl cyanides—selective acylation of amino-compounds with acyl cyanides. Synthesis 4:433–440CrossRefGoogle Scholar
  38. 38.
    (a) Armstrong BD, Han S et al (2009) Overhauser dynamic nuclear polarization to study local water dynamics. J Am Chem Soc 131:4641–4647; (b) Franck JM, Pavlova A et al (2013) Quantitative Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. Prog Nucl Magn Reson Spectrosc 74:33–65Google Scholar
  39. 39.
    Stals PJM, Cheng C-Y et al (2016) Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function? Chem Sci 7:2011–2015CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory for Macromolecular and Organic ChemistryInstitute for Complex Molecular SystemsEindhovenThe Netherlands

Personalised recommendations