Skip to main content

Self-Assembled Coordination Cages and Organic Capsules as Catalytic Supramolecular Reaction Vessels

  • Chapter
  • First Online:
Book cover Effects of Nanoconfinement on Catalysis

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Host-guest chemistry has undergone an enormous development since the discovery of cyclodextrins more than 100 years ago which has culminated in the preparation of many artificial host molecules that are not only capable of encapsulating a variety of guests but also of promoting reactions inside their cavities. As the environment dramatically influences the behavior of chemical systems, recent years have seen increased interest in the use of the shielded inner phases of synthetic hosts to stabilize reactive species, shift equilibria, or achieve otherwise unfavorable conformations of guest species. Confinement inside hosts has been used to lower the symmetry of guests, thereby creating new means to control the outcomes of asymmetric reactions in the same way that biological systems make extensive use of tailored microenvironments to promote stereospecific reactions by destabilizing the ground state and stabilizing certain transition state geometries. This chapter will focus on the use of self-assembled coordination cages and organic capsules as homogeneous catalytic supramolecular reaction vessels. Modulation of the cavity environment and binding selectivity is relatively easily achieved because small changes to the geometries of building blocks can lead to much larger changes in the structures and properties of the hollow polyhedral coordination cages formed upon self-assembly. As the reaction medium influences the binding of the reactants and products in subtle but important ways, control over host solubility through host framework charge and substituent effects provides further means to control guest binding strengths, selectivity, and dynamics, and thereby a possible way to overcome product inhibition which is often encountered in supramolecular catalysis. A review will be provided over unusual selectivity observed in reactions carried out in metal-organic capsules as a result of structural constraints. Similarly, rate enhancements in bimolecular reactions due to an increase in effective molarity and stabilization of the transition state as well as transformations carried out under unusual conditions—for example, the acid catalyzed hydrolysis of orthoformates under neutral or basic conditions—will be discussed in this chapter. Furthermore, self-assembled coordination cages based on chiral ligands are of particular interest because they provide an asymmetric microenvironment for promoting stereoselective reactions by purely non-covalent interactions. Particular emphasis will be laid on the hydrolysis of organophosphorus species: As an example of the author’s work, the catalytic degradation of the insecticide dichlorvos by a [Fe4L6]8+ cage molecule will be presented, and this report will also include the up-to-date unpublished results obtained from experiments with other organophosphorus insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM (2014) Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem Soc Rev 43:1660–1733. doi:10.1039/C3CS60027K

    Article  CAS  Google Scholar 

  2. Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM (2014) Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev 43:1734–1787. doi:10.1039/C3CS60037H

    Article  CAS  Google Scholar 

  3. Brown CJ, Toste FD, Bergman RG, Raymond KN (2015) Supramolecular catalysis in metal-ligand cluster hosts. Chem Rev 115:3012–3035. doi:10.1021/cr4001226

    Article  CAS  Google Scholar 

  4. Catti L, Zhang Q, Tiefenbacher K (2016) Self-assembled supramolecular structures as catalysts for reactions involving cationic transition states. Synthesis 48:313–328. doi:10.1055/s-0035-1560362

    CAS  Google Scholar 

  5. Gangemi CMA, Pappalardo A, Sfrazzetto GT (2015) Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from biology to catalysis. RSC Adv 5:51919–51933. doi:10.1039/C5RA09364C

    Article  CAS  Google Scholar 

  6. Vardhan H, Verpoort F (2015) Metal-organic polyhedra: catalysis and reactive intermediates. Adv Synth Catal 357:1351–1368. doi:10.1002/adsc.201400778

    Article  CAS  Google Scholar 

  7. Leenders SHAM, Gramage-Doria R, de Bruin B, Reek JNH (2014) Transition metal catalysis in confined spaces. Chem Soc Rev 44:433–448. doi:10.1039/C4CS00192C

    Article  Google Scholar 

  8. Zhao C, Sun Q-F, Hart-Cooper WM et al (2013) Chiral amide directed assembly of a diastereo- and enantiopure supramolecular host and its application to enantioselective catalysis of neutral substrates. J Am Chem Soc 135:18802–18805. doi:10.1021/ja411631v

    Article  CAS  Google Scholar 

  9. Bolliger JL, Belenguer AM, Nitschke JR (2013) Enantiopure water-soluble [Fe4L6] cages: host-guest chemistry and catalytic activity. Angew Chem Int Ed 52:7958–7962. doi:10.1002/anie.201302136

    Article  CAS  Google Scholar 

  10. MacGillivray LR, Atwood JL (1997) A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389:469–472. doi:10.1038/38985

    Article  CAS  Google Scholar 

  11. Koblenz TS, Wassenaar J, Reek JNH (2008) Reactivity within a confined self-assembled nanospace. Chem Soc Rev 37:247–262. doi:10.1039/B614961H

    Article  CAS  Google Scholar 

  12. van der Vlugt JI, Koblenz TS, Wassenaar J, Reek JNH (2010) Chemistry in self-assembled nanoreactors. In: Brinker UH, Mieusset J-L (eds) Mol. Encapsulation, Wiley, pp 145–174

    Google Scholar 

  13. Kang J, Santamaría J, Hilmersson G, Rebek J (1998) Self-assembled molecular capsule catalyzes a Diels–Alder reaction. J Am Chem Soc 120:7389–7390. doi:10.1021/ja980927n

    Article  CAS  Google Scholar 

  14. Yoshizawa M, Tamura M, Fujita M (2006) Diels-Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312:251–254. doi:10.1126/science.1124985

    Article  CAS  Google Scholar 

  15. Hastings CJ, Fiedler D, Bergman RG, Raymond KN (2008) Aza cope rearrangement of propargyl enammonium cations catalyzed by a self-assembled “nanozyme”. J Am Chem Soc 130:10977–10983. doi:10.1021/ja8013055

    Article  CAS  Google Scholar 

  16. Cullen W, Misuraca MC, Hunter CA et al (2016) Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat Chem 8:231–236. doi:10.1038/nchem.2452

    Article  CAS  Google Scholar 

  17. Zhao C, Toste FD, Raymond KN, Bergman RG (2014) Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J Am Chem Soc 136:14409–14412. doi:10.1021/ja508799p

    Article  CAS  Google Scholar 

  18. Hastings CJ, Backlund MP, Bergman RG, Raymond KN (2011) Enzyme-like control of carbocation deprotonation regioselectivity in supramolecular catalysis of the Nazarov cyclization. Angew Chem Int Ed 50:10570–10573. doi:10.1002/anie.201105325

    Article  CAS  Google Scholar 

  19. Pluth MD, Bergman RG, Raymond KN (2009) Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. Acc Chem Res 42:1650–1659. doi:10.1021/ar900118t

    Article  CAS  Google Scholar 

  20. Bolliger JL (2014) [Fe4L6]8+ cages: encapsulation and catalytic degradation of an insecticide. Chim Int J Chem 68:204–207. doi:10.2533/chimia.2014.204

    Article  CAS  Google Scholar 

  21. Pluth MD, Bergman RG, Raymond KN (2007) Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316:85–88. doi:10.1126/science.1138748

    Article  CAS  Google Scholar 

  22. Pluth MD, Bergman RG, Raymond KN (2008) Supramolecular catalysis of orthoformate hydrolysis in basic solution: an enzyme-like mechanism. J Am Chem Soc 130:11423–11429. doi:10.1021/ja802839v

    Article  CAS  Google Scholar 

  23. Pluth MD, Bergman RG, Raymond KN (2007) Catalytic deprotection of acetals in basic solution with a self-assembled supramolecular “nanozyme”. Angew Chem Int Ed 46:8587–8589. doi:10.1002/anie.200703371

    Article  CAS  Google Scholar 

  24. Pluth MD, Bergman RG, Raymond KN (2009) The acid hydrolysis mechanism of acetals catalyzed by a supramolecular assembly in basic solution. J Org Chem 74:58–63. doi:10.1021/jo802131v

    Article  CAS  Google Scholar 

  25. Zhang Q, Tiefenbacher K (2013) Hexameric resorcinarene capsule is a brønsted acid: investigation and application to synthesis and catalysis. J Am Chem Soc 135:16213–16219. doi:10.1021/ja4080375

    Article  CAS  Google Scholar 

  26. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed Engl 8:781–853. doi:10.1002/anie.196907811

    Article  CAS  Google Scholar 

  27. Hastings CJ, Pluth MD, Bergman RG, Raymond KN (2010) Enzymelike catalysis of the Nazarov cyclization by supramolecular encapsulation. J Am Chem Soc 132:6938–6940. doi:10.1021/ja102633e

    Article  CAS  Google Scholar 

  28. Catti L, Tiefenbacher K (2015) Intramolecular hydroalkoxylation catalyzed inside a self-assembled cavity of an enzyme-like host structure. Chem Commun 51:892–894. doi:10.1039/C4CC08211G

    Article  CAS  Google Scholar 

  29. Zhang Q, Tiefenbacher K (2015) Terpene cyclization catalysed inside a self-assembled cavity. Nat Chem 7:197–202. doi:10.1038/nchem.2181

    Article  CAS  Google Scholar 

  30. Hart-Cooper WM, Zhao C, Triano RM et al (2015) The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. Chem Sci 6:1383–1393. doi:10.1039/C4SC02735C

    Article  CAS  Google Scholar 

  31. Hart-Cooper WM, Clary KN, Toste FD et al (2012) Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. J Am Chem Soc 134:17873–17876. doi:10.1021/ja308254k

    Article  CAS  Google Scholar 

  32. Fiedler D, Bergman RG, Raymond KN (2004) Supramolecular Catalysis of a unimolecular transformation: Aza-Cope rearrangement within a self-assembled host. Angew Chem Int Ed 43:6748–6751. doi:10.1002/anie.200461776

    Article  CAS  Google Scholar 

  33. Fiedler D, van Halbeek H, Bergman RG, Raymond KN (2006) Supramolecular catalysis of unimolecular rearrangements: substrate scope and mechanistic insights. J Am Chem Soc 128:10240–10252. doi:10.1021/ja062329b

    Article  CAS  Google Scholar 

  34. Brown CJ, Bergman RG, Raymond KN (2009) Enantioselective catalysis of the Aza-Cope rearrangement by a chiral supramolecular assembly. J Am Chem Soc 131:17530–17531. doi:10.1021/ja906386w

    Article  CAS  Google Scholar 

  35. Bianchini G, Sorella GL, Canever N et al (2013) Efficient isonitrile hydration through encapsulation within a hexameric self-assembled capsule and selective inhibition by a photo-controllable competitive guest. Chem Commun 49:5322–5324. doi:10.1039/C3CC42233J

    Article  CAS  Google Scholar 

  36. Kang J, Rebek J (1997) Acceleration of a Diels-Alder reaction by a self-assembled molecular capsule. Nature 385:50–52. doi:10.1038/385050a0

    Article  CAS  Google Scholar 

  37. Shimizu S, Usui A, Sugai M et al (2013) Hexameric capsule of a resorcinarene bearing fluorous feet as a self-assembled nanoreactor: a Diels-Alder reaction in a fluorous biphasic system. Eur J Org Chem 2013:4734–4737. doi:10.1002/ejoc.201300652

    Article  CAS  Google Scholar 

  38. Murase T, Nishijima Y, Fujita M (2012) Cage-catalyzed Knoevenagel condensation under neutral conditions in water. J Am Chem Soc 134:162–164. doi:10.1021/ja210068f

    Article  CAS  Google Scholar 

  39. Giust S, La Sorella G, Sperni L et al (2015) Supramolecular catalysis in the synthesis of substituted 1 H-Tetrazoles from isonitriles by a self-assembled hexameric capsule. Asian J Org Chem 4:217–220. doi:10.1002/ajoc.201402229

  40. Cavarzan A, Scarso A, Sgarbossa P et al (2011) Supramolecular control on chemo- and regioselectivity via encapsulation of (NHC)-Au catalyst within a hexameric self-assembled host. J Am Chem Soc 133:2848–2851. doi:10.1021/ja111106x

    Article  CAS  Google Scholar 

  41. Cavarzan A, Reek JNH, Trentin F et al (2013) Substrate selectivity in the alkyne hydration mediated by NHC–Au(I) controlled by encapsulation of the catalyst within a hydrogen bonded hexameric host. Catal Sci Technol 3:2898–2901. doi:10.1039/C3CY00300K

    Article  CAS  Google Scholar 

  42. Leung DH, Bergman RG, Raymond KN (2007) Highly selective supramolecular catalyzed allylic alcohol isomerization. J Am Chem Soc 129:2746–2747. doi:10.1021/ja068688o

    Article  CAS  Google Scholar 

  43. Brown CJ, Miller GM, Johnson MW et al (2011) High-turnover supramolecular catalysis by a protected ruthenium(II) complex in aqueous solution. J Am Chem Soc 133:11964–11966. doi:10.1021/ja205257x

    Article  CAS  Google Scholar 

  44. Wang ZJ, Brown CJ, Bergman RG et al (2011) Hydroalkoxylation catalyzed by a gold(I) complex encapsulated in a supramolecular host. J Am Chem Soc 133:7358–7360. doi:10.1021/ja202055v

    Article  CAS  Google Scholar 

  45. Lohr TL, Marks TJ (2015) Orthogonal tandem catalysis. Nat Chem 7:477–482. doi:10.1038/nchem.2262

    Article  CAS  Google Scholar 

  46. Wang ZJ, Clary KN, Bergman RG et al (2013) A supramolecular approach to combining enzymatic and transition metal catalysis. Nat Chem 5:100–103. doi:10.1038/nchem.1531

    Article  CAS  Google Scholar 

  47. Salles AG, Zarra S, Turner RM, Nitschke JR (2013) A self-organizing chemical assembly line. J Am Chem Soc 135:19143–19146. doi:10.1021/ja412235e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne L. Bolliger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bolliger, J.L. (2017). Self-Assembled Coordination Cages and Organic Capsules as Catalytic Supramolecular Reaction Vessels. In: Poli, R. (eds) Effects of Nanoconfinement on Catalysis. Fundamental and Applied Catalysis. Springer, Cham. https://doi.org/10.1007/978-3-319-50207-6_2

Download citation

Publish with us

Policies and ethics