Skip to main content

Abstract

In this chapter, we provide statistical methods that are useful in CMC applications. Our goal is to provide a description of these methods without delving deeply into the theoretical aspects. References are provided for the reader who desires a more in depth understanding of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTM E29 (2013) Standard practice for using significant digits in test data to determine conformance with specifications. ASTM International, West Conshohocken

    Google Scholar 

  • Berger RL, Hsu JC (1996) Bioequivalence trials, intersection-union tests and equivalence confidence sets. Stat Sci 11(4):283–302

    Article  MathSciNet  MATH  Google Scholar 

  • Berry SM, Carlin BP, Lee JJ, Muller P (2010) Bayesian adaptive methods for clinical trials. CRC Press, Taylor & Francis Group, Boca Raton

    Book  MATH  Google Scholar 

  • Bolstad WM (2007) Introduction to Bayesian statistics, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Borman PJ, Chatfield MJ (2015) Avoid the perils of using rounded data. J Pharm Biomed Anal 115:502–508

    Article  Google Scholar 

  • Boylan GL, Cho RR (2012) The normal probability plot as a tool for understanding data: a shape analysis from the perspective of skewness, kurtosis, and variability. Qual Reliab Eng Int 28:249–264

    Article  Google Scholar 

  • Brown H, Prescott R (2006) Applied mixed models in medicine, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Burdick RK, Graybill FA (1992) Confidence intervals on variance components. Marcel Dekker, New York

    MATH  Google Scholar 

  • Burdick RK, Borror CM, Montgomery DC (2005) Design and analysis of gauge R&R experiments: making decisions with confidence intervals in random and mixed ANOVA models. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Burgess C (2013) Rounding results for comparison with specification. Pharm Technol 37(4):122–124

    Google Scholar 

  • Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46:167–174

    MathSciNet  Google Scholar 

  • Cleveland WS (1985) The elements of graphing data. Wadsworth Advanced Books and Software, Monterey

    Google Scholar 

  • Dong X, Tsong Y, Shen M, Zhong J (2015) Using tolerance intervals for assessment of pharmaceutical quality. J Biopharm Stat 25(2):317–327

    Article  MathSciNet  Google Scholar 

  • Eberhardt KR, Mee RW, Reeve CP (1989) Computing factors for exact two-sided tolerance limits for a normal distribution. Commun Stat Simul Comput 18(1):397–413

    Article  MATH  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York

    Google Scholar 

  • Gitlow H, Awad H (2013) Intro students need both confidence and tolerance intervals. Am Stat 67(4):229–234

    Article  MathSciNet  Google Scholar 

  • Graybill FA, Wang C-M (1980) Confidence intervals on nonnegative linear combinations of variances. J Am Stat Assoc 75(372):869–873

    Article  MathSciNet  Google Scholar 

  • Hahn GJ, Meeker WQ (1991) Statistical intervals: a guide for practitioners. Wiley, New York

    Book  MATH  Google Scholar 

  • Hannig J, Iyer H, Patterson P (2006) Fiducial generalized confidence intervals. J Am Stat Assoc 101(473):254–269

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman D, Kringle R (2005) Two-sided tolerance intervals for balanced and unbalanced random effects models. J Biopharm Stat 15:283–293

    Article  MathSciNet  Google Scholar 

  • Howe WG (1969) Two-sided tolerance limits for normal populations--some improvements. J Am Stat Assoc 64:610–620

    MATH  Google Scholar 

  • International Conference on Harmonization (2004) Q5E Comparability of biotechnological/biological products subject to changes in their manufacturing process

    Google Scholar 

  • Joseph L, Gyorkos TW, Coupal L (1995) Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141(3):263–272

    Article  Google Scholar 

  • Kelley K (2007) Confidence intervals for standardized effect sizes: theory, application, and implementation. J Stat Softw 20(8):1–24. http://www.jstatsoft.org/

  • Krishnamoorthy K, Mathew T (2009) Statistical tolerance regions: theory, applications, and computation. Wiley, New York

    Book  MATH  Google Scholar 

  • Krishnamoorthy K, Xia Y, Xie F (2011) A simple approximate procedure for constructing binomial and Poisson tolerance intervals. Commun Stat Theory Methods 40(12):2243–2258

    Article  MathSciNet  MATH  Google Scholar 

  • Kruschke JK (2015) Doing Bayesian data analysis, 2nd edn. Academic Press, Burlington, MA

    Google Scholar 

  • Limentani GB, Ringo MC, Ye F, Bergquist ML, McSorley EO (2005) Beyond the t-test: statistical equivalence testing. Anal Chem 77(11):221–226

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc, Cary

    Google Scholar 

  • Mee RW (1984) β-expectation and β-content tolerance limits for balanced one-way ANOVA random model. Technometrics 26(3):251–254

    Google Scholar 

  • Mee RW (1988) Estimation of the percentage of a normal distribution lying outside a specified interval. Commun Stat Theory Methods 17(5):1465–1479

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Vining GG (2002) Generalized linear models with applications in engineering and the sciences. Wiley, New York

    MATH  Google Scholar 

  • Nijhuis MB, Van den Heuvel ER (2007) Closed-form confidence intervals on measures of precision for an inter-laboratory study. J Biopharm Stat 17:123–142

    Article  Google Scholar 

  • NIST/SEMATECH e-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/. Accessed 6 Jan 2016

  • Office of Regulatory Affairs (ORA) Laboratory Manual. http://www.fda.gov/ScienceResearch/FieldScience/LaboratoryManual/ucm174283.htm. Accessed 6 Jan 2016

  • Persson T, Rootzen H (1977) Simple and highly efficient estimators for a type I censored normal sample. Biometrika 64:123–128

    Article  MATH  Google Scholar 

  • Quiroz J, Strong J, Zhang Z (2016) Risk management for moisture related effects in dry manufacturing processes: a statistical approach. Pharm Dev Technol 21:147–151

    Article  Google Scholar 

  • Suess EA, Fraser C, Trumbo BE (2000) Elementary uses of the Gibbs sampler: applications to medical screening tests. STATS Winter 27:3–10

    Google Scholar 

  • Thomas JD, Hultquist RA (1978) Interval estimation for the unbalanced case of the one-way random effects model. Ann Stat 6:582–587

    Article  MathSciNet  MATH  Google Scholar 

  • Torbeck LD (2010) %RSD: friend or foe? Pharm Technol 34(1):37–38

    Google Scholar 

  • Tufte ER (1983) The visual display of quantitative information. Graphics Press, Cheshire

    Google Scholar 

  • USP 39-NF 34 (2016a) General Chapter <1010> Analytical data—interpretation and treatment. US Pharmacopeial Convention, Rockville

    Google Scholar 

  • USP 39-NF 34 (2016b) General Notices 7.20: Rounding Rules. US Pharmacopeial Convention, Rockville

    Google Scholar 

  • Vangel MG (1996) Confidence intervals for a normal coefficient of variation. Am Stat 15(1):21–26

    MathSciNet  Google Scholar 

  • Vining G (2010) Technical advice: quantile plots to check assumptions. Qual Eng 22(4):364–367

    Article  MathSciNet  Google Scholar 

  • Vining G (2011) Technical advice: residual plots to check assumptions. Qual Eng 23(1):105–110

    Article  Google Scholar 

  • Vukovinsky KE, Pfahler LB (2014) The role of the normal data distribution in pharmaceutical development and manufacturing. Pharm Technol 38(10)

    Google Scholar 

  • Yu Q-L, Burdick RK (1995) Confidence intervals on variance components in regression models with balanced (Q-1)-fold nested error structure. Commun Stat Theory Methods 24:1151–1167

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Burdick, R.K. et al. (2017). Statistical Methods for CMC Applications. In: Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Statistics for Biology and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-50186-4_2

Download citation

Publish with us

Policies and ethics