Effects of a 3D Virtual Reality Neurofeedback Scenario on User Experience and Performance in Stroke Patients

  • Silvia Erika KoberEmail author
  • Johanna Louise Reichert
  • Daniela Schweiger
  • Christa Neuper
  • Guilherme Wood
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10056)


Learning to control one’s own brain activity using neurofeedback can cause cognitive and behavioral improvements in healthy individuals and neurological patients. However, little is known about the impact of feedback design. Therefore, we investigated the effects of traditional two-dimensional and three-dimensional virtual reality based feedback modules on training performance and user experience in stroke patients. Neurofeedback performance was comparable between conditions. Interest, perceived feeling of control, and motivation were higher in patients using the virtual reality application compared to the two-dimensional feedback condition. In contrary, patients who performed the virtual reality training showed higher values in incompetence fear and lower values in mastery confidence compared to the traditional training group. These results indicate that neurofeedback can be improved with the implementation of virtual reality scenarios, especially with regard to patients’ interest and motivation. However, stroke patients might be more skeptical concerning virtual reality technique and less self-confident in using it.


Virtual Reality Stroke Patient Augmented Reality Virtual Reality Training Simulator Sickness Questionnaire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the European STREP Program – Collaborative Project no. FP7-287320 – CONTRAST and by BioTechMed-Graz, Austria. Possible inaccuracies of information are under the responsibility of the project team. The text reflects solely the views of its authors. The European Commission is not liable for any use that may be made of the information contained therein. The authors are grateful to T-Systems ITC Iberia for technical support.


  1. 1.
    Gruzelier, J.H.: EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44, 124–141 (2014)CrossRefGoogle Scholar
  2. 2.
    Hofer, D., Kober, S.E., Reichert, J., Krenn, M., Farveleder, K., Grieshofer, P., Neuper, C., Wood, G.: Spezifische Effekte von EEG basiertem Neurofeedbacktraining auf kognitive Leistungen nach einem Schlaganfall. Ein nutzvolles Werkzeug für die Rehabilitation? Lernen und Lernstörungen 3, 1–19 (2014)Google Scholar
  3. 3.
    Kober, S.E., Schweiger, D., Witte, M., Reichert, J.L., Grieshofer, P., Neuper, C., Wood, G.: Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. J. Neuroeng. Rehabil. 12, 107 (2015)CrossRefGoogle Scholar
  4. 4.
    Reichert, J.L., Kober, S.E., Schweiger, D., Grieshofer, P., Neuper, C., Wood, G.: shutting down sensorimotor interferences after stroke. a proof-of-principle SMR neurofeedback study. Front. Hum. Neurosci. 10, 110 (2016)CrossRefGoogle Scholar
  5. 5.
    Cho, B.-H., Kim, S., Shin, D.I., Lee, J.H., Lee, S.M., Kim, I.Y., Kim, S.I.: Neurofeedback training with virtual reality for inattention and impulsiveness. Cyberpsychol. Behav. 7(5), 519–526 (2004). The Impact of the Internet, Multimedia and Virtual Reality on Behavior and SocietyCrossRefGoogle Scholar
  6. 6.
    Arns, M., de Ridder, S., Strehl, U., Breteler, M., Coenen, T.: Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40(3), 180–189 (2009)CrossRefGoogle Scholar
  7. 7.
    Tan, G., Thornby, J., Hammond, D.C., Strehl, U., Canady, B., Arnemann, K., Kaiser, D.A.: Meta-analysis of EEG biofeedback in treating epilepsy. Clin. EEG Neurosci. 40(3), 173–179 (2009)CrossRefGoogle Scholar
  8. 8.
    Strehl, U. (ed.): Neurofeedback Theoretische Grundlagen - Praktisches Vorgehen - Wissenschaftliche Evidenz. Kohlhammer, Stuttgart (2013)Google Scholar
  9. 9.
    Ninaus, M., Kober, S., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., Wood, G.: Neural substrates of cognitive control under the belief of getting neurofeedback training. Front. Hum. Neurosci. 7(914), 1–10 (2013)Google Scholar
  10. 10.
    Ninaus, M., Kober, S., Witte, M., Koschutnig, K., Neuper, C., Wood, G.: Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biol. Psychol. 110, 126–133 (2015)CrossRefGoogle Scholar
  11. 11.
    Wood, G., Kober, S.E., Witte, M., Neuper, C.: On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research. Front. Syst. Neurosci. 8, 171 (2014)CrossRefGoogle Scholar
  12. 12.
    Emmert, K., Kopel, R., Sulzer, J., Brühl, A.B., Berman, B.D., Linden, D.E., Horovitz, S.G., Breimhorst, M., Caria, A., Frank, S., Johnston, S., Long, Z., Paret, C., Robineau, F., Veit, R., Bartsch, A., Beckmann, C.F., van de Ville, D., Haller, S.: Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage 124, 806–812 (2016)CrossRefGoogle Scholar
  13. 13.
    Gaume, A., Vialatte, A., Mora-Sánchez, A., Ramdani, C., Vialatte, F.B.: A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci. Biobehav. Rev. 68, 891–910 (2016)CrossRefGoogle Scholar
  14. 14.
    Yan, N., Wang, J., Liu, M., Zong, L., Jiao, Y., Yue, J., Lv, Y., Yang, Q., Lan, H., Liu, Z.: Designing a brain-computer interface device for neurofeedback using virtual environments. J. Med. Biol. Eng. 28(3), 167–172 (2008)Google Scholar
  15. 15.
    Kleih, S., Nijboer, F., Halder, S., Kübler, A.: Motivation modulates the P300 amplitude during brain–computer interface use. Clin. Neurophysiol. 121(7), 1023–1031 (2010)CrossRefGoogle Scholar
  16. 16.
    Harris, K., Reid, D.: The influence of virtual reality play on children’s motivation. Can. J. Occup. Ther. 72(1), 21–29 (2005)CrossRefGoogle Scholar
  17. 17.
    Benedetti, F., Catenacci Volpi, N., Parisi, L., Sartori, G.: Attention training with an easy–to–use brain computer interface. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014. LNCS, vol. 8526, pp. 236–247. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07464-1_22 Google Scholar
  18. 18.
    Aart, J. v., Klaver, E., Bartneck, C., Feijs, L., Peters, P.: EEG headset for neurofeedback therapy - enabling easy use in the home environment. In: Proceedings of the Biosignals - International Conference on Bio-inspired Signals and Systems, Funchal, pp. 23–30 (2008)Google Scholar
  19. 19.
    Lécuyer, A., Lotte, F., Reilly, R.B., Leeb, R., Hirose, M., Slater, M.: Brain-computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008)CrossRefGoogle Scholar
  20. 20.
    Ron-Angevin, R., Daz Estrella, A., Reyes-Lecuona, A.: Development of a brain-computer interface (BCI) based on virtual reality to improve training techniques. In: Applied Technologies in Medicine and Neuroscience, pp. 13–20 (2005)Google Scholar
  21. 21.
    Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007). A Publication of the IEEE Engineering in Medicine and Biology SocietyCrossRefGoogle Scholar
  22. 22.
    Friedman, D., Leeb, R., Guger, C., Steed, A., Pfurtscheller, G., Slater, M.: Navigating virtual reality by thought: what is it like? presence Teleoper. Virtual Environ. 16(1), 100–110 (2007)CrossRefGoogle Scholar
  23. 23.
    Gruzelier, J., Inoue, A., Smart, R., Steed, A., Steffert, T.: Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480(2), 112–116 (2010)CrossRefGoogle Scholar
  24. 24.
    Mercier-Ganady, J., Lotte, F., Loup-Escande, E., Marchal, M., Lecuyer, A.: The Mind-Mirror: see your brain in action in your head using EEG and augmented reality. In: 2014 IEEE Virtual Reality (VR), Minneapolis, MN, USA, pp. 33–38 (2014)Google Scholar
  25. 25.
    Bayliss, J.D.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 113–116 (2003). A Publication of the IEEE Engineering in Medicine and Biology SocietyMathSciNetCrossRefGoogle Scholar
  26. 26.
    Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation: review. Cyberpsychol. Behav. 8(3), 241–262 (2005). The Impact of the Internet, Multimedia and Virtual Reality on Behavior and SocietyCrossRefGoogle Scholar
  27. 27.
    Marzbani, H., Marateb, H.R., Mansourian, M.: Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 7(2), 143–158 (2016)Google Scholar
  28. 28.
    Burdea, G.: Virtual rehabilitation: benefits and challenges. Methods Inf. Med. 42(5), 519–523 (2003)Google Scholar
  29. 29.
    Morganti, F.: Virtual interaction in cognitive neuropsychology. Stud. Health Technol. Inform. 99, 55–70 (2004)Google Scholar
  30. 30.
    Brooks, J.O., Goodenough, R.R., Crisler, M.C., Klein, N.D., Alley, R.L., Koon, B.L., Logan Jr., W.C., Ogle, J.H., Tyrrell, R.A., Wills, R.F.: Simulator sickness during driving simulation studies. Accid. Anal. Prev. 42(3), 788–796 (2010)CrossRefGoogle Scholar
  31. 31.
    Cameirão, M., Bermúdezi Badia, S., Zimmerli, L., Oller, E.D., Verschure, P.: A virtual reality system for motor and cognitive neurorehabilitation. Chall. Assist. Technol. 20, 393–397 (2007)Google Scholar
  32. 32.
    Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004). doi: 10.1146/annurev.neuro.27.070203.144230 CrossRefGoogle Scholar
  33. 33.
    Mulder, T.: Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114(10), 1265–1278 (2007)CrossRefGoogle Scholar
  34. 34.
    Sollfrank, T., Hart, D., Goodsell, R., Foster, J., Tan, T.: 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery. Front. Hum. Neurosci. 9, 463 (2015)CrossRefGoogle Scholar
  35. 35.
    Hwang, H.-J., Kwon, K., Im, C.-H.: Neurofeedback-based motor imagery training for brain–computer interface (BCI). J. Neurosci. Methods 179(1), 150–156 (2009)CrossRefGoogle Scholar
  36. 36.
    Arrouet, C., Congedo, M., Marvie, J.E., Lamarche, F., Lécuyer, A., Arnaldi, B.: Open-ViBE: a 3D platform for real-time neuroscience. J. Neurother. 9(1), 3–25 (2005)CrossRefGoogle Scholar
  37. 37.
    Kessler, J., Markowitsch, H.J., Denzler, P.: Mini Mental Status Examination MMSE. German Version. Beltz, Weinheim (1990)Google Scholar
  38. 38.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29(2–3), 169–195 (1999)CrossRefGoogle Scholar
  39. 39.
    Bounias, M., Laibow, R.E., Bonaly, A., Stubblebine, A.N.: EEG-neurobiofeedback treatment of patients with brain injury: part 1: typological classification of clinical syndromes. J. Neurother. 5(4), 23–44 (2002)CrossRefGoogle Scholar
  40. 40.
    Rheinberg, F., Vollmeyer, R., Burns, B.D.: FAM: Ein Fragebogen zur Erfassung aktuller Motivation in Lern- und Leistungssituationen. Diagnostica 47(2), 57–66 (2001)CrossRefGoogle Scholar
  41. 41.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)CrossRefGoogle Scholar
  42. 42.
    Crawford, J.R., Garthwaite, P.H.: Statistical methods for single-case studies in neuropsychology: comparing the slope of a patient’s regression line with those of a control sample. Cortex 40(3), 533–548 (2004). A Journal Devoted to the Study of the Nervous System and BehaviorCrossRefGoogle Scholar
  43. 43.
    Crawford, J., Garthwaite, P.H.: Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia 40, 1196–1208 (2002)CrossRefGoogle Scholar
  44. 44.
    Kober, S.E., Witte, M., Stangl, M., Valjamae, A., Neuper, C., Wood, G.: Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study. Clin. Neurophysiol. 126(1), 82–95 (2015)CrossRefGoogle Scholar
  45. 45.
    Wagner, N., Hassanein, K., Head, M.: Computer use by older adults: a multi-disciplinary review. Comput. Hum. Behav. 26(5), 870–882 (2010). Advancing Educational Research on Computer-supported Collaborative Learning (CSCL) through the use of gStudy CSCL ToolsCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Silvia Erika Kober
    • 1
    • 2
    Email author
  • Johanna Louise Reichert
    • 1
    • 2
  • Daniela Schweiger
    • 1
  • Christa Neuper
    • 1
    • 2
    • 3
  • Guilherme Wood
    • 1
    • 2
  1. 1.Department of PsychologyUniversity of Graz, Universitaetsplatz 2/IIIGrazAustria
  2. 2.BioTechMed-GrazGrazAustria
  3. 3.Laboratory of Brain-Computer Interfaces, Institute of Neural EngineeringGraz University of TechnologyGrazAustria

Personalised recommendations