Skip to main content

Sigma-1 Receptors Fine-Tune the Neuronal Networks

  • Chapter
  • First Online:
Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

The endoplasmic reticular (ER) protein sigma-1 receptor (Sig-1R) has been implicated in CNS disorders including but not limited to neurodegenerative diseases, depression , amnesia, and substance abuse. Sig-1Rs are particularly enriched in the specific domain where ER membranes make contacts with the mitochondria (MAM). Within that specific domain, Sig-1Rs play significant roles governing calcium signaling and reactive oxygen species homeostasis to maintain proper neuronal functions. Studies showed that the Sig-1R is pivotal to regulate neuroplasticity and neural survival via multiple aspects of mechanism. Numerous reports have been focusing on Sig-1R’s regulatory effects in ER stress, mitochondrial function, oxidative stress and protein chaperoning. In this book chapter, we will discuss the emerging role of Sig-1R in balancing the populations of neuron and glia and their implications in CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin L, Lesnick TG, Maraganore DM, Isacson O (2009) Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci 32(3):142–149

    Google Scholar 

  2. Kubo T, Endo M, Hata K, Taniguchi J, Kitajo K, Tomura S et al (2008) Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem 105(1):113–126

    Google Scholar 

  3. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M et al (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3(6):e98

    Google Scholar 

  4. Jung H, Gkogkas CG, Sonenberg N, Holt CE (2014) Remote control of gene function by local translation. Cell 157(1):26–40

    Google Scholar 

  5. Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT, Williams GG et al (2007) Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol 178(6):965–980

    Google Scholar 

  6. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118(Pt 23):5411–5419

    Google Scholar 

  7. Shi P, Wei Y, Zhang J, Gal J, Zhu H (2010) Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis. J Alzheimers Dis 20(Suppl 2):S311–S324

    Google Scholar 

  8. Amiri M, Hollenbeck PJ (2008) Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neuropsychol 68(11):1348–1361

    Google Scholar 

  9. Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125(Pt 9):2095–2104

    Google Scholar 

  10. Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 5(6):1564–1575

    Google Scholar 

  11. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610

    Google Scholar 

  12. Sha S, Qu WJ, Li L, Lu ZH, Chen L, Yu WF et al (2013) Sigma-1 receptor knockout impairs neurogenesis in dentate gyrus of adult hippocampus via down-regulation of NMDA receptors. CNS Neurosci Ther 19(9):705–713

    Google Scholar 

  13. Tsai SY, Hayashi T, Harvey BK, Wang Y, Wu WW, Shen RF et al (2009) Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway. Proc Natl Acad Sci U S A 106(52):22468–22473

    Google Scholar 

  14. Kimura Y, Fujita Y, Shibata K, Mori M, Yamashita T (2013) Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling. PLoS One 8(10):e75760

    Google Scholar 

  15. Tsai SY, Pokrass MJ, Klauer NR, Nohara H, Su TP (2015) Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid. Proc Natl Acad Sci U S A 112(21):6742–6747

    Google Scholar 

  16. Van Battum EY, Brignani S, Pasterkamp RJ (2015) Axon guidance proteins in neurological disorders. Lancet Neurol 14(5):532–546. doi:10.1016/S1474-4422(14)70257-1

  17. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468(7321):223–231

    Google Scholar 

  18. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477

    Google Scholar 

  19. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63

    Google Scholar 

  20. Zuchero JB, Barres BA (2015) Glia in mammalian development and disease. Development 142(22):3805–3809

    Google Scholar 

  21. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Google Scholar 

  22. Liu R, Wang Z, Gou L, Xu H (2015) A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo. Mol Med Rep 12(2):2598–2606. doi:10.3892/mmr.2015.3702

  23. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7(8):617–627

    Google Scholar 

  24. Francardo V, Bez F, Wieloch T, Nissbrandt H, Ruscher K, Cenci MA (2014) Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 137(Pt 7):1998–2014

    Google Scholar 

  25. Moon JY, Roh DH, Yoon SY, Choi SR, Kwon SG, Choi HS et al (2014) sigma1 receptors activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 171(24):5881–5897

    Google Scholar 

  26. Dong H, Ma Y, Ren Z, Xu B, Zhang Y, Chen J et al (2015) Sigma-1 receptor modulates neuroinflammation after traumatic brain injury. Cell Mol Neurobiol 36(5):639–645

    Google Scholar 

  27. Cao L, Walker MP, Vaidya NK, Fu M, Kumar S, Kumar A (2015) Cocaine-Mediated Autophagy in Astrocytes involves Sigma 1 receptor, PI3K, mTOR, Atg5/7, Beclin-1 and Induces Type II programed cell death. Mol Neurobiol 53(7):4417–4430

    Google Scholar 

  28. Zhang Y, Lv X, Bai Y, Zhu X, Wu X, Chao J et al (2015) Involvement of sigma-1 receptor in astrocyte activation induced by methamphetamine via up-regulation of its own expression. J Neuroinflammation 12:29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Yi Anne Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Tsai, SY.A., Su, TP. (2017). Sigma-1 Receptors Fine-Tune the Neuronal Networks. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_7

Download citation

Publish with us

Policies and ethics