Skip to main content

Structural Perspectives on Sigma-1 Receptor Function

  • Chapter
  • First Online:
Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

The sigma-1 receptor is an enigmatic ER-resident transmembrane protein linked to a variety of human diseases. Although the receptor was first cloned 20 years ago, the molecular structure of the protein and the mechanistic basis for its interaction with drug-like small molecules have remained unclear until recently. The determination of the first crystal structure of human sigma-1 offered the first detailed views of the sigma-1 architecture, and revealed an unusual overall fold with a single transmembrane helix in each protomer. The structure shows an overall trimeric receptor arrangement, and each protomer binds a single ligand molecule at the center of its carboxy-terminal domain. These results offer detailed molecular views of receptor structure, oligomerization, and ligand recognition, providing a framework for the next era of sigma-1 research.

Authors (Assaf Alon, Hayden Schmidt, Sanduo Zheng) contributed equally and are listed in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su TP, Su TC, Nakamura Y, Tsai SY (2016) The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci 37(4):262–278. doi:10.1016/j.tips.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  2. Mavlyutov TA, Guo LW, Epstein ML, Ruoho AE (2015) Role of the sigma-1 receptor in Amyotrophic Lateral Sclerosis (ALS). J Pharmacol Sci 127:10–16. doi:10.1016/j.jphs.2014.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palmer CP, Mahen R, Schnell E, Djamgoz MB, Aydar E (2007) Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 67:11166–11175. doi:10.1158/0008-5472.can-07-1771

    Article  CAS  PubMed  Google Scholar 

  4. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610. doi:10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  5. Balasuriya D, Stewart AP, Edwardson JM (2013) The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 33:18219–18224. doi:10.1523/jneurosci.3360-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao XF, Yao JJ, He YL, Hu C, Mei YA (2012) Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels. PLoS One 7:e49384. doi:10.1371/journal.pone.0049384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim FJ et al (2010) Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 77:695–703. doi:10.1124/mol.109.057083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walker JM et al (1990) Sigma receptors: biology and function. Pharmacol Rev 42:355–402

    CAS  PubMed  Google Scholar 

  9. Martin BR et al (1984) Stereoisomers of [3H]-N-allylnormetazocine bind to different sites in mouse brain. J Pharmacol Exp Ther 231:539–544

    CAS  PubMed  Google Scholar 

  10. Fontanilla D et al (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:934–937. doi:10.1126/science.1166127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keiser MJ et al (2009) Predicting new molecular targets for known drugs. Nature 462:175–181. doi:10.1038/nature08506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanner M et al (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93:8072–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kekuda R, Prasad PD, Fei YJ, Leibach FH, Ganapathy V (1996) Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 229:553–558. doi:10.1006/bbrc.1996.1842

    Article  CAS  PubMed  Google Scholar 

  14. Seth P, Leibach FH, Ganapathy V (1997) Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 241:535–540. doi:10.1006/bbrc.1997.7840

    Article  CAS  PubMed  Google Scholar 

  15. Seth P et al (1998) Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 70:922–931

    Article  CAS  PubMed  Google Scholar 

  16. Aydar E, Palmer CP, Klyachko VA, Jackson MB (2002) The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34:399–410

    Article  CAS  PubMed  Google Scholar 

  17. Laurini E et al (2011) Homology model and docking-based virtual screening for ligands of the sigma1 receptor. ACS Med Chem Lett 2:834–839. doi:10.1021/ml2001505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ortega-Roldan JL, Ossa F, Amin NT, Schnell JR (2015) Solution NMR studies reveal the location of the second transmembrane domain of the human sigma-1 receptor. FEBS Lett 589:659–665. doi:10.1016/j.febslet.2015.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caffrey M, Li D, Dukkipati A (2012) Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 51:6266–6288. doi:10.1021/bi300010w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith JL, Fischetti RF, Yamamoto M (2012) Micro-crystallography comes of age. Curr Opin Struct Biol 22:602–612. doi:10.1016/j.sbi.2012.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chae PS et al (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008. doi:10.1038/nmeth.1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gromek KA et al (2013) Improved expression and purification of sigma 1 receptor fused to maltose binding protein by alteration of linker sequence. Protein Expr Purif 89:203–209. doi:10.1016/j.pep.2013.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmidt HR et al (2016) Crystal structure of the human sigma1 receptor. Nature 532:527–530. doi:10.1038/nature17391

    Article  CAS  PubMed  Google Scholar 

  25. Lever JR et al (2014) Relationship between cerebral sigma-1 receptor occupancy and attenuation of cocaine's motor stimulatory effects in mice by PD144418. J Pharm Exp Ther 351:153–163. doi:10.1124/jpet.114.216671

    Article  Google Scholar 

  26. John CS, Vilner BJ, Bowen WD (1994) Synthesis and characterization of [125I]-N-(N-benzylpiperidin-4-yl)-4- iodobenzamide, a new sigma receptor radiopharmaceutical: high-affinity binding to MCF-7 breast tumor cells. J Med Chem 37:1737–1739

    Article  CAS  PubMed  Google Scholar 

  27. Knablein J et al (1997) Ta6Br(2+)12, a tool for phase determination of large biological assemblies by X-ray crystallography. J Mol Biol 270:1–7

    Article  CAS  PubMed  Google Scholar 

  28. Gromek KA et al (2014) The oligomeric states of the purified sigma-1 receptor are stabilized by ligands. J Biol Chem 289:20333–20344. doi:10.1074/jbc.M113.537993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pal A et al (2007) Identification of regions of the sigma-1 receptor ligand binding site using a novel photoprobe. Mol Pharmacol 72:921–933. doi:10.1124/mol.107.038307

    Article  CAS  PubMed  Google Scholar 

  30. Mishra AK et al (2015) The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 466:263–271. doi:10.1042/bj20141321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Glennon RA et al (1994) Structural features important for sigma 1 receptor binding. J Med Chem 37:1214–1219

    Article  CAS  PubMed  Google Scholar 

  32. Seth P et al (2001) Expression pattern of the type 1 sigma receptor in the brain and identity of critical anionic amino acid residues in the ligand-binding domain of the receptor. Biochim Biophys Acta 1540:59–67

    Article  CAS  PubMed  Google Scholar 

  33. Bermack JE, Debonnel G (2005) Distinct modulatory roles of sigma receptor subtypes on glutamatergic responses in the dorsal hippocampus. Synapse 55:37–44. doi:10.1002/syn.20085

    Article  CAS  PubMed  Google Scholar 

  34. Ablordeppey SY, Fischer JB, Law H, Glennon RA (2002) Probing the proposed phenyl-A region of the sigma-1 receptor. Bioorg Med Chem 10:2759–2765

    Article  CAS  PubMed  Google Scholar 

  35. Bowen WD, Hellewell SB, McGarry KA (1989) Evidence for a multi-site model of the rat brain sigma receptor. Eur J Pharmacol 163:309–318

    Article  CAS  PubMed  Google Scholar 

  36. Luty AA et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68:639–649. doi:10.1002/ana.22274

    Article  CAS  PubMed  Google Scholar 

  37. Ullah MI et al (2015) In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia. Neurogenetics 16:299–306. doi:10.1007/s10048-015-0453-1

    Article  CAS  PubMed  Google Scholar 

  38. Li X et al (2015) A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy. Neurology 84:2430–2437. doi:10.1212/wnl.0000000000001680

    Article  CAS  PubMed  Google Scholar 

  39. Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70:913–919. doi:10.1002/ana.22534

    Article  CAS  PubMed  Google Scholar 

  40. Gregianin E et al. (2016) Loss-of-function mutations in the SIGMAR1 gene cause distal hereditary motor neuropathy by impairing ER-mitochondria tethering and Ca2+ signalling. Hum Mol Genet. doi:10.1093/hmg/ddw220

  41. Wong AY et al (2016) Aberrant subcellular dynamics of sigma-1 receptor mutants underlying neuromuscular diseases. Mol Pharmacol 90:238–253. doi:10.1124/mol.116.104018

    Article  CAS  PubMed  Google Scholar 

  42. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376. doi:10.1093/nar/gkr703

    Article  CAS  PubMed  Google Scholar 

  43. Ashkenazy H et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350. doi:10.1093/nar/gkw408

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Kruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Alon, A., Schmidt, H., Zheng, S., Kruse, A.C. (2017). Structural Perspectives on Sigma-1 Receptor Function. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_2

Download citation

Publish with us

Policies and ethics