Skip to main content

Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection

  • Chapter
  • First Online:
Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

Sigma-1 receptors are molecular chaperones that may act as pathological mediators and targets for novel therapeutic applications in neurodegenerative diseases. Accumulating evidence indicates that sigma-1 ligands can either directly or indirectly modulate multiple neurodegenerative processes, including excitotoxicity, calcium dysregulation, mitochondrial and endoplasmic reticulum dysfunction, inflammation, and astrogliosis. In addition, sigma-1 ligands may act as disease-modifying agents in the treatment for central nervous system (CNS) diseases by promoting the activity of neurotrophic factors and neural plasticity. Here, we summarize their neuroprotective and neurorestorative effects in different animal models of acute brain injury and chronic neurodegenerative diseases, and highlight their potential role in mitigating disease. Notably, current data suggest that sigma-1 receptor dysfunction worsens disease progression, whereas enhancement amplifies pre-existing functional mechanisms of neuroprotection and/or restoration to slow disease progression. Collectively, the data support a model of the sigma-1 receptor as an amplifier of intracellular signaling, and suggest future clinical applications of sigma-1 ligands as part of multi-therapy approaches to treat neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 186.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 186.99
Price includes VAT (Austria)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prince M, et al (2015) World Alzheimer Report 2015. The Global Impact of Dementia. Alzheimer’s Disease International. http://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf

  2. Villard V et al (2009) Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology 34(6):1552–1566

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen L et al (2015) Role of sigma-1 receptors in neurodegenerative diseases. J Pharmacol Sci 127(1):17–29

    Article  CAS  PubMed  Google Scholar 

  4. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su TP et al (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31(12):557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Urani A et al (2002) Enhanced antidepressant effect of sigma(1) (sigma(1)) receptor agonists in beta(25-35)-amyloid peptide-treated mice. Behav Brain Res 134(1–2):239–247

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto RR, Bowen WD, Su TP (eds) (2007) Sigma receptors: chemistry, cell biology and clinical implications. Springer, New York, p. 399

    Google Scholar 

  8. Aarts MM, Arundine M, Tymianski M (2003) Novel concepts in excitotoxic neurodegeneration after stroke. Expert Rev Mol Med 5(30):1–22

    Article  PubMed  Google Scholar 

  9. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  10. Vagnerova K et al (2006) Sigma 1 receptor agonists act as neuroprotective drugs through inhibition of inducible nitric oxide synthase. Anesth Analg 103(2):430–434 table of contents

    Article  CAS  PubMed  Google Scholar 

  11. Ruscher K et al (2012) Effects of the sigma-1 receptor agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)-piperazine dihydro-chloride on inflammation after stroke. PLoS One 7(9):e45118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allahtavakoli M, Jarrott B (2011) Sigma-1 receptor ligand PRE-084 reduced infarct volume, neurological deficits, pro-inflammatory cytokines and enhanced anti-inflammatory cytokines after embolic stroke in rats. Brain Res Bull 85(3–4):219–224

    Article  CAS  PubMed  Google Scholar 

  13. Sato S et al (2014) Antidepressant fluvoxamine reduces cerebral infarct volume and ameliorates sensorimotor dysfunction in experimental stroke. Neuroreport 25(10):731–736

    Article  CAS  PubMed  Google Scholar 

  14. Ajmo CT Jr et al (2006) Sigma receptor activation reduces infarct size at 24 hours after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res 3(2):89–98

    Article  CAS  PubMed  Google Scholar 

  15. Katnik C et al (2014) Treatment with afobazole at delayed time points following ischemic stroke improves long-term functional and histological outcomes. Neurobiol Dis 62:354–364

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi H et al (1996) PPBP [4-phenyl-1-(4-phenylbutyl) piperidine] decreases brain injury after transient focal ischemia in rats. Stroke 27(11):2120–2123

    Article  CAS  PubMed  Google Scholar 

  17. Lysko PG et al (1992) Neuroprotective effects of SKF 10,047 in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke 23(3):414–419

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi H et al (1995) PPBP [4-phenyl-1-(4-phenylbutyl) piperidine], a potent sigma-receptor ligand, decreases brain injury after transient focal ischemia in cats. Stroke 26(9):1676–1682

    Article  CAS  PubMed  Google Scholar 

  19. Ruscher K et al (2011) The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain 134(Pt 3):732–746

    Article  PubMed  Google Scholar 

  20. Hazell AS (2007) Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int 50(7–8):941–953

    Article  CAS  PubMed  Google Scholar 

  21. Jarrott B, Williams SJ (2015) Chronic brain inflammation: the neurochemical basis for drugs to reduce inflammation. Neurochem Res 41:523

    Article  PubMed  CAS  Google Scholar 

  22. Yang ZJ et al (2010) Sigma receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons. Exp Neurol 221(1):166–174

    Article  CAS  PubMed  Google Scholar 

  23. Griesmaier E et al (2012) Neuroprotective effects of the sigma-1 receptor ligand PRE-084 against excitotoxic perinatal brain injury in newborn mice. Exp Neurol 237(2):388–395

    Article  CAS  PubMed  Google Scholar 

  24. Mancuso R et al (2012) Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 9(4):814–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mavlyutov TA et al (2013) Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 240:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peviani M et al (2014) Neuroprotective effects of the sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 62:218–232

    Google Scholar 

  27. Francardo V et al (2014) Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 137:1998

    Article  PubMed  Google Scholar 

  28. Meunier J, Ieni J, Maurice T (2006) The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 149(8):998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maurice T, Su TP, Privat A (1998) Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 83(2):413–428

    Article  CAS  PubMed  Google Scholar 

  30. Schetz JA et al (2007) A prototypical sigma-1 receptor antagonist protects against brain ischemia. Brain Res 1181:1–9

    Google Scholar 

  31. Matsumoto RR et al (2014) Sigma (sigma) receptors as potential therapeutic targets to mitigate psychostimulant effects. Adv Pharmacol 69:323–386

    Article  CAS  PubMed  Google Scholar 

  32. Diaz JL et al (2009) Selective sigma-1 (sig1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem (Formerly Current Medicinal Chemistry-Central Nervous System Agents) 9(3):172–183

    Google Scholar 

  33. Hong J et al (2015) Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons. Cell Death Dis 6(7):e1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51(6–7):333–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542

    Article  CAS  PubMed  Google Scholar 

  36. Zündorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14(7):1275–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350

    Article  CAS  PubMed  Google Scholar 

  38. Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233–249

    Article  CAS  PubMed  Google Scholar 

  39. Sovolyova N et al (2014) Stressed to death - mechanisms of ER stress-induced cell death. Biol Chem 395(1):1–13

    Article  CAS  PubMed  Google Scholar 

  40. Halliday M, Mallucci GR (2014) Targeting the unfolded protein response in neurodegeneration: a new approach to therapy. Neuropharmacology 76(Pt A):169–174

    Article  CAS  PubMed  Google Scholar 

  41. Chaturvedi RK, Flint Beal M (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29

    Article  CAS  PubMed  Google Scholar 

  42. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201

    Article  PubMed  Google Scholar 

  43. Frank-Cannon TC et al (2009) Does neuroinflammation fan the flame in neurodegenerative diseases. Mol Neurodegener 4(47):1–13

    Google Scholar 

  44. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689

    Article  CAS  PubMed  Google Scholar 

  45. Lu B et al (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416

    Article  CAS  PubMed  Google Scholar 

  46. Weissmiller AM, Wu C (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegeneration 1:14

    Article  Google Scholar 

  47. Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Rev 33(2–3):199–227

    Article  CAS  PubMed  Google Scholar 

  48. Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407(6807):963–970

    Article  CAS  PubMed  Google Scholar 

  49. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129

    Article  CAS  PubMed  Google Scholar 

  50. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45(5):583–595

    Article  CAS  PubMed  Google Scholar 

  51. Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60(2):379–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farber NB et al (2002) Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity. Mol Psychiatry 7(1):32–43

    Article  CAS  PubMed  Google Scholar 

  53. Martin PM et al (2004) The sigma receptor ligand (+)-pentazocine prevents apoptotic retinal ganglion cell death induced in vitro by homocysteine and glutamate. Brain Res Mol Brain Res 123(1–2):66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. DeCoster MA et al (1995) Sigma receptor-mediated neuroprotection against glutamate toxicity in primary rat neuronal cultures. Brain Res 671(1):45–53

    Article  CAS  PubMed  Google Scholar 

  55. Dun Y et al (2007) Prevention of excitotoxicity in primary retinal ganglion cells by (+)-pentazocine, a sigma receptor-1 specific ligand. Invest Ophthalmol Vis Sci 48(10):4785–4794

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shen YC et al (2008) Dimemorfan protects rats against ischemic stroke through activation of sigma-1 receptor-mediated mechanisms by decreasing glutamate accumulation. J Neurochem 104(2):558–572

    CAS  PubMed  Google Scholar 

  57. Shimazu S et al (2000) Sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures. Eur J Pharmacol 388(2):139–146

    Google Scholar 

  58. Fu Y et al (2012) Fluvoxamine increased glutamate release by activating both 5-HT(3) and sigma-1 receptors in prelimbic cortex of chronic restraint stress C57BL/6 mice. Biochim Biophys Acta 1823(4):826–837

    Article  CAS  PubMed  Google Scholar 

  59. Lu CW et al (2012) Sigma-1 receptor agonist SKF10047 inhibits glutamate release in rat cerebral cortex nerve endings. J Pharmacol Exp Ther 341(2):532–542

    Google Scholar 

  60. Balasuriya D, Stewart AP, Edwardson JM (2013) The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 33(46):18219–18224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pabba M, Sibille E (2015) Sigma-1 and N-methyl-D-aspartate receptors: a partnership with beneficial outcomes. Mol Neuropsychiatry 1(1):47–51

    Google Scholar 

  62. Martina M et al (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 578(Pt 1):143–157

    Article  CAS  PubMed  Google Scholar 

  63. Rodriguez-Munoz M et al (2015) The sigma1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid Redox Signal 22(10):799–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pabba M et al (2014) NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci 34(34):11325–11338

    Google Scholar 

  65. Roh DH et al (2010) Sigma-1 receptor-induced increase in murine spinal NR1 phosphorylation is mediated by the PKCalpha and epsilon, but not the PKCzeta, isoforms. Neurosci Lett 477(2):95–99

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Munoz M et al (2015) The ON:OFF switch, sigma1R-HINT1 protein, controls GPCR-NMDA receptor cross-regulation: implications in neurological disorders. Oncotarget 6(34):35458–35477

    PubMed  PubMed Central  Google Scholar 

  67. Xu Q et al (2015) Sigma 1 receptor activation regulates brain-derived neurotrophic factor through NR2A-CaMKIV-TORC1 pathway to rescue the impairment of learning and memory induced by brain ischaemia/reperfusion. Psychopharmacology 232(10):1779–1791

    Article  CAS  PubMed  Google Scholar 

  68. Kim HC et al (2001) Carbetapentane attenuates kainate-induced seizures via sigma-1 receptor modulation. Life Sci 69(8):915–922

    Article  CAS  PubMed  Google Scholar 

  69. Shin EJ et al (2005) The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via sigma1 receptor activation: comparison with the effects of dextromethorphan. Br J Pharmacol 144(7):908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tuerxun T et al (2010) SA4503, a sigma-1 receptor agonist, prevents cultured cortical neurons from oxidative stress-induced cell death via suppression of MAPK pathway activation and glutamate receptor expression. Neurosci Lett 469(3):303–308

    Article  CAS  PubMed  Google Scholar 

  71. Kumamaru E et al (2008) Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol 22(3):546–558

    Article  CAS  PubMed  Google Scholar 

  72. Tchedre KT, Yorio T (2008) Sigma-1 receptors protect RGC-5 cells from apoptosis by regulating intracellular calcium, Bax levels, and caspase-3 activation. Invest Ophthalmol Vis Sci 49(6):2577–2588

    Google Scholar 

  73. Behensky AA et al (2013) Afobazole activation of sigma-1 receptors modulates neuronal responses to amyloid-beta25-35. J Pharmacol Exp Ther 347(2):468–477

    Article  CAS  PubMed  Google Scholar 

  74. Tsai SY et al (2014) Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin Ther Targets 18(12):1461–1476

    CAS  PubMed  Google Scholar 

  75. Monnet FP (2005) Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance. Biol Cell 97(12):873–883

    Article  CAS  PubMed  Google Scholar 

  76. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610

    Article  CAS  PubMed  Google Scholar 

  77. Tsai SY et al (2009) Sigma-1 receptor chaperones and diseases. Cent Nerv Syst Agents Med Chem 9(3):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Herrera Y et al (2008) Sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J Pharmacol Exp Ther 327(2):491–502

    Google Scholar 

  79. Tchedre KT et al (2008) Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Invest Ophthalmol Vis Sci 49(11):4993–5002

    Article  PubMed  Google Scholar 

  80. Hall AA et al (2009) Sigma receptors suppress multiple aspects of microglial activation. Glia 57(7):744–754

    Article  PubMed  Google Scholar 

  81. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  82. Miki Y et al (2014) Accumulation of the sigma-1 receptor is common to neuronal nuclear inclusions in various neurodegenerative diseases. Neuropathology 34(2):148–158

    Article  CAS  PubMed  Google Scholar 

  83. Ha Y et al (2011) Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons. Invest Ophthalmol Vis Sci 52(1):527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mori T et al (2013) Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One 8(10):e76941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chu U, Ruoho AE (2015) Biochemical pharmacology of the sigma-1 receptor. Mol Pharmacol 89:142

    Google Scholar 

  86. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  87. Mitsuda T et al (2011) Sigma-1Rs are upregulated via PERK/eIF2α/ATF4 pathway and execute protective function in ER stress. Biochem Biophys Res Commun 415(3):519–525

    Article  CAS  PubMed  Google Scholar 

  88. Omi T et al (2014) Fluvoxamine alleviates ER stress via induction of sigma-1 receptor. Cell Death Dis 5:e1332

    Google Scholar 

  89. Shimazawa M et al (2015) Effect of a sigma-1 receptor agonist, cutamesine dihydrochloride (SA4503), on photoreceptor cell death against light-induced damage. Exp Eye Res 132:64–72

    Article  CAS  PubMed  Google Scholar 

  90. Narita N et al (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of σ receptors in rat brain. Eur J Pharmacol 307(1):117–119

    Article  CAS  PubMed  Google Scholar 

  91. Wu Z, Bowen WD (2008) Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 283(42):28198–28215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shioda N et al (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, sigma1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287(28):23318–23331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70(6):913–919

    Article  CAS  PubMed  Google Scholar 

  94. Luty AA et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68(5):639–649

    Article  CAS  PubMed  Google Scholar 

  95. Wegleiter K et al (2014) The sigma-1 receptor agonist 4-phenyl-1-(4-phenylbutyl)piperidine (PPBP) protects against newborn excitotoxic brain injury by stabilizing the mitochondrial membrane potential in vitro and inhibiting microglial activation in vivo. Exp Neurol 261:501–509

    Google Scholar 

  96. Klouz A et al (2008) Protection of cellular and mitochondrial functions against liver ischemia by N-benzyl-N′-(2-hydroxy-3,4-dimethoxybenzyl)-piperazine (BHDP), a sigma1 ligand. Eur J Pharmacol 578(2–3):292–299

    Article  CAS  PubMed  Google Scholar 

  97. Burke NN et al (2014) Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun 42:147–156

    Article  CAS  PubMed  Google Scholar 

  98. Robson MJ et al (2013) SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation. Exp Neurol 247:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu Z et al (2015) Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. J Neurochem 134(5):904–914

    Article  CAS  PubMed  Google Scholar 

  100. Cuevas J et al (2011) Afobazole modulates microglial function via activation of both sigma-1 and sigma-2 receptors. J Pharmacol Exp Ther 339(1):161–172

    Article  CAS  PubMed  Google Scholar 

  101. Dong H et al (2015) Sigma-1 receptor modulates neuroinflammation after traumatic brain injury. Cell Mol Neurobiol 36:639

    Article  PubMed  CAS  Google Scholar 

  102. Behensky AA et al (2013) Stimulation of sigma receptors with afobazole blocks activation of microglia and reduces toxicity caused by amyloid-beta25-35. J Pharmacol Exp Ther 347(2):458–467

    Article  CAS  PubMed  Google Scholar 

  103. Derocq JM et al (1995) In vivo inhibition of endotoxin-induced pro-inflammatory cytokines production by the sigma ligand SR 31747. J Pharmacol Exp Ther 272(1):224–230

    CAS  PubMed  Google Scholar 

  104. Casellas P et al (1994) Immunopharmacological profile of SR 31747: in vitro and in vivo studies on humoral and cellular responses. J Neuroimmunol 52(2):193–203

    Article  CAS  PubMed  Google Scholar 

  105. Oxombre B et al (2015) High-affinity sigma1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis. Br J Pharmacol 172(7):1769–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown A, McFarlin D, Raine C (1982) Chronologic neuropathology of relapsing experimental allergic encephalomyelitis in the mouse. Lab Investig; A Journal of Technical Methods and Pathology 46(2):171–185

    CAS  Google Scholar 

  107. Koyama Y (2014) Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int 78:35–42

    Article  CAS  PubMed  Google Scholar 

  108. Penas C et al (2011) Sigma receptor agonist 2-(4-morpholinethyl)-1-phenylcyclohexanecar-boxylate (PRE084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. J Neurotrauma 28(5):831–840

    Google Scholar 

  109. Robson MJ et al (2014) SN79, a sigma receptor antagonist, attenuates methamphetamine-induced astrogliosis through a blockade of OSMR/gp130 signaling and STAT3 phosphorylation. Exp Neurol 254:180–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zamanian JL et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bothwell M (2014) NGF, BDNF, NT3, and NT4. In: Lewin GR, Carter BD (eds) Neurotrophic factors. Springer, Berlin/Heidelberg, pp 3–15

    Chapter  Google Scholar 

  112. Budni J et al (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 6(5):331–341

    Article  PubMed  PubMed Central  Google Scholar 

  113. Allen SJ et al (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175

    Article  CAS  PubMed  Google Scholar 

  114. Li L et al (1995) Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci U S A 92(21):9771–9775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tomac A et al (1995) Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci U S A 92(18):8274–8278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fujimoto M et al (2012) Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 66(7):630–639

    Article  CAS  PubMed  Google Scholar 

  117. Ishima T, Fujita Y, Hashimoto K (2014) Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol 727:167–173

    Article  CAS  PubMed  Google Scholar 

  118. Ishima T, Hashimoto K (2012) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors. PLoS One 7(5):e37989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ishima T et al (2008) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 32(7):1656–1659

    Article  CAS  Google Scholar 

  120. Takebayashi M, Hayashi T, Su TP (2002) Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 303(3):1227–1237

    Article  CAS  PubMed  Google Scholar 

  121. Nishimura T et al (2008) Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS One 3(7):e2558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Takebayashi M, Hayashi T, Su TP (2004) σ-1 Receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution. Synapse 53(2):90–103

    Article  CAS  PubMed  Google Scholar 

  123. Kimura Y et al (2013) Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling. PLoS One 8(10):e75760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Van Battum EY, Brignani S, Pasterkamp RJ (2015) Axon guidance proteins in neurological disorders. Lancet Neurol 14(5):532–546

    Article  CAS  PubMed  Google Scholar 

  125. Hayashi T, Su T-P (2001) Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci 98(2):491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tsai S-Y et al (2009) Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1· GTP pathway. Proc Natl Acad Sci 106(52):22468–22473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tsai S-YA et al (2015) Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid. Proc Natl Acad Sci 112(21):6742–6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hahn CM et al (2005) Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience 134(2):449–465

    Article  CAS  PubMed  Google Scholar 

  129. Minegishi S et al (2010) Membrane association facilitates degradation and cleavage of the cyclin-dependent kinase 5 activators p35 and p39. Biochemistry 49(26):5482–5493

    Article  CAS  PubMed  Google Scholar 

  130. Lucas G et al (2008) Further evidence for an antidepressant potential of the selective sigma1 agonist SA 4503: electrophysiological, morphological and behavioural studies. Int J Neuropsychopharmacol 11(4):485–495

    Google Scholar 

  131. Fukunaga K, Sakagami H, Moriguchi S (2015) Sigma-1 receptor agonist and fluvoxamine rescue depressive behaviors in CaMKIV null mice. FASEB J 29(1 Supplement):931

    Google Scholar 

  132. Moriguchi S et al (2013) Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice. PLoS One 8(4):e60863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sha S et al (2013) Sigma-1 receptor knockout impairs neurogenesis in dentate gyrus of adult hippocampus via down-regulation of NMDA receptors. CNS Neurosci Ther 19(9):705–713

    Article  CAS  PubMed  Google Scholar 

  134. Kerkis I et al (2015) Neural and mesenchymal stem cells in animal models of Huntington’s disease: past experiences and future challenges. Stem Cell Res Ther 6(1):1–15

    Article  CAS  Google Scholar 

  135. Nixon CC et al (2015) Cocaine exposure impairs multineage hematopoiesis of human hematopoietic progenitor cells mediated by the sigma-1 receptor. Sci Rep 5:8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Urfer R et al (2014) Phase II trial of the sigma-1 receptor agonist cutamesine (SA4503) for recovery enhancement after acute ischemic stroke. Stroke 45(11):3304–3310

    Google Scholar 

  137. Bucolo C, Drago F (2004) Effects of neurosteroids on ischemia-reperfusion injury in the rat retina: role of sigma1 recognition sites. Eur J Pharmacol 498(1–3):111–114

    Article  CAS  PubMed  Google Scholar 

  138. Mishina M et al (2008) Low density of sigma1 receptors in early Alzheimer’s disease. Ann Nucl Med 22(3):151–156

    Article  CAS  PubMed  Google Scholar 

  139. Mishina M et al (2005) Function of sigma1 receptors in Parkinson’s disease. Acta Neurol Scand 112(2):103–107

    Article  CAS  PubMed  Google Scholar 

  140. Prause J et al (2013) Altered localization, abnormal modification and loss of function of sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 22(8):1581–1600

    Google Scholar 

  141. Hayashi T et al (2012) The lifetime of UDP-galactose:ceramide galactosyltransferase is controlled by a distinct endoplasmic reticulum-associated degradation (ERAD) regulated by sigma-1 receptor chaperones. J Biol Chem 287(51):43156–43169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Langa F et al (2003) Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. Eur J Neurosci 18(8):2188–2196

    Article  PubMed  Google Scholar 

  143. Mavlyutov TA et al (2010) The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 167(2):247–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mavlyutov TA, Nickells RW, Guo LW (2011) Accelerated retinal ganglion cell death in mice deficient in the sigma-1 receptor. Mol Vis 17:1034–1043

    Google Scholar 

  145. Ha Y et al (2012) Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1. Mol Vis 18:2860–2870

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Su TP, Hayashi T (2003) Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem 10(20):2073–2080

    Article  CAS  PubMed  Google Scholar 

  147. Hayashi T, Maurice T, Su TP (2000) Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther 293(3):788–798

    CAS  PubMed  Google Scholar 

  148. Debonnel G et al (1996) Differential effects of sigma ligands on the N-methyl-D-aspartate response in the CA1 and CA3 regions of the dorsal hippocampus: effect of mossy fiber lesioning. Neuroscience 71(4):977–987

    Article  CAS  PubMed  Google Scholar 

  149. Monnet FP et al (1990) N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol 179(3):441–445

    Article  CAS  PubMed  Google Scholar 

  150. Ishikawa M et al (2007) High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503. Biol Psychiatry 62(8):878–883

    Google Scholar 

  151. Ishikawa M et al (2009) High occupancy of σ1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503. Int J Neuropsychopharmacol 12(8):1127–1131

    Article  CAS  PubMed  Google Scholar 

  152. Maurice T (2016) Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments. Behav Brain Res 296:270–278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rae R. Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Nguyen, L., Lucke-Wold, B.P., Mookerjee, S., Kaushal, N., Matsumoto, R.R. (2017). Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_10

Download citation

Publish with us

Policies and ethics