Biomedical Features

  • Mariela A. Agotegaray
  • Verónica L. Lassalle
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The study of biodistribution and pharmacokinetics of nanosystems devoted to biomedical applications is mandatory, especially for nanodevices with potential applications as agents for targeted drug delivery. The physicochemical properties of silica coated magnetic nanoparticles such as composition, size, and surface charge play important roles in the biological impact of the nanosystems. The biodistribution pattern of the nanoparticles gives information about those organs which are feasible for target and also provides information to develop new strategies to improve targeting. Pharmacokinetics and metabolism are two important issues in terms of the behavior of the magnetic nanoparticles in the organism to ensure a good combination between nanoparticles and specific drugs to treat the desired pathologies.

This chapter reviews the biodistribution, pharmacokinetics, and metabolism of silica, iron oxide nanoparticles, and silica-coated magnetic nanoparticles in order to understand the role of each component in the biological features proposed.


Biodistribution Pharmacokinetics Metabolism 


  1. 1.
    Muthusamy, B., Hanumanthu, G., Suresh, S., Rekha, B., Srinivas, D., Karthick, L., et al. (2005). Plasma Proteome Database as a resource for proteomics research. Proteomics, 5(13), 3531–3536.CrossRefGoogle Scholar
  2. 2.
    Lynch, I., & Dawson, K. A. (2008). Protein-nanoparticle interactions. Nano Today, 3(1), 40–47.CrossRefGoogle Scholar
  3. 3.
    Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., & McNeil, S. E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 61(6), 428–437.CrossRefGoogle Scholar
  4. 4.
    Gessner, A., Lieske, A., Paulke, B. R., & Müller, R. H. (2002). Influence of surface charge density on protein adsorption on polymeric nanoparticles: Analysis by two-dimensional electrophoresis. European Journal of Pharmaceutics and Biopharmaceutics, 54(2), 165–170.CrossRefGoogle Scholar
  5. 5.
    Monopoli, M. P., Walczyk, D., Campbell, A., Elia, G., Lynch, I., Baldelli Bombelli, F., et al. (2011). Physical − chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society, 133(8), 2525–2534.CrossRefGoogle Scholar
  6. 6.
    Mahmoudi, M., Lynch, I., Ejtehadi, M. R., Monopoli, M. P., Bombelli, F. B., & Laurent, S. (2011). Protein − nanoparticle interactions: Opportunities and challenges. Chemical Reviews, 111(9), 5610–5637.CrossRefGoogle Scholar
  7. 7.
    Deng, Z. J., Mortimer, G., Schiller, T., Musumeci, A., Martin, D., & Minchin, R. F. (2009). Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology, 20(45), 455101.CrossRefGoogle Scholar
  8. 8.
    Lesniak, A., Fenaroli, F., Monopoli, M. P., Åberg, C., Dawson, K. A., & Salvati, A. (2012). Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano, 6(7), 5845–5857.CrossRefGoogle Scholar
  9. 9.
    Li, S. D., & Huang, L. (2008). Pharmacokinetics and biodistribution of nanoparticles. Molecular Pharmaceutics, 5(4), 496–504.CrossRefGoogle Scholar
  10. 10.
    Opanasopit, P., Nishikawa, M., & Hashida, M. (2002). Factors affecting drug and gene delivery: Effects of interaction with blood components. Critical Reviews in Therapeutic Drug Carrier Systems, 19, 191–233.CrossRefGoogle Scholar
  11. 11.
    Xie, G., Sun, J., Zhong, G., Shi, L., & Zhang, D. (2010). Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Archives of Toxicology, 84(3), 183–190.CrossRefGoogle Scholar
  12. 12.
    Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668.CrossRefGoogle Scholar
  13. 13.
    Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 9469–9474.CrossRefGoogle Scholar
  14. 14.
    He, X., Nie, H., Wang, K., Tan, W., Wu, X., & Zhang, P. (2008). In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Analytical Chemistry, 80(24), 9597–9603.CrossRefGoogle Scholar
  15. 15.
    Cho, M., Cho, W. S., Choi, M., Kim, S. J., Han, B. S., Kim, S. H., et al. (2009). The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicology Letters, 189(3), 177–183.CrossRefGoogle Scholar
  16. 16.
    Yu, T., Hubbard, D., Ray, A., & Ghandehari, H. (2012). In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. Journal of Controlled Release, 163(1), 46–54.CrossRefGoogle Scholar
  17. 17.
    Yoon, T. J., Yu, K. N., Kim, E., Kim, J. S., Kim, B. G., Yun, S. H., et al. (2006). Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small, 2(2), 209–215.CrossRefGoogle Scholar
  18. 18.
    Barbe, C., Bartlett, J., Kong, L., Finnie, K., Lin, H. Q., Larkin, M., et al. (2004). Silica particles: A novel drug‐delivery system. Advanced Materials, 16(21), 1959–1966.CrossRefGoogle Scholar
  19. 19.
    Li, Z. Z., Wen, L. X., Shao, L., & Chen, J. F. (2004). Fabrication of porous hollow silica nanoparticles and their applications in drug release control. Journal of Controlled Release, 98(2), 245–254.CrossRefGoogle Scholar
  20. 20.
    Mader, H., Li, X., Saleh, S., Link, M., Kele, P., & Wolfbeis, O. S. (2008). Fluorescent silica nanoparticles. Annals of the New York Academy of Sciences, 1130(1), 218–223.CrossRefGoogle Scholar
  21. 21.
    Zhao, X., Wang, J., Tao, S., Ye, T., Kong, X., & Ren, L. (2016). In vivo bio-distribution and efficient tumor targeting of gelatin/silica nanoparticles for gene delivery. Nanoscale Research Letters, 11(1), 1–9.CrossRefGoogle Scholar
  22. 22.
    Huang, X., Li, L., Liu, T., Hao, N., Liu, H., Chen, D., et al. (2011). The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 5(7), 5390–5399.CrossRefGoogle Scholar
  23. 23.
    Andrews, N. C. (1999). Disorders of iron metabolism. New England Journal of Medicine, 341(26), 1986–1995.CrossRefGoogle Scholar
  24. 24.
    Gutiérrez, L., Mejías, R., Barber, D. F., Veintemillas-Verdaguer, S., Serna, C. J., Lázaro, F. J., et al. (2011). Ac magnetic susceptibility study of in vivo nanoparticle biodistribution. Journal of Physics D: Applied Physics, 44(25), 255002.CrossRefGoogle Scholar
  25. 25.
    Zysler, R. D., Lima, E., Jr., Mansilla, M. V., Troiani, H. E., Pisciotti, M. L., Gurman, P., et al. (2013). A new quantitative method to determine the uptake of SPIONs in animal tissue and its application to determine the quantity of nanoparticles in the liver and lung of Balb-c mice exposed to the SPIONs. Journal of Biomedical Nanotechnology, 9(1), 142–145.CrossRefGoogle Scholar
  26. 26.
    Ruiz, A., Hernandez, Y., Cabal, C., González, E., Veintemillas-Verdaguer, S., Martinez, E., et al. (2013). Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale, 5(23), 11400–11408.CrossRefGoogle Scholar
  27. 27.
    Levy, M., Luciani, N., Alloyeau, D., Elgrabli, D., Deveaux, V., Pechoux, C., et al. (2011). Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 32(16), 3988–3999.CrossRefGoogle Scholar
  28. 28.
    Kim, J. S., Yoon, T. J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., et al. (2006). Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological Sciences, 89(1), 338–347.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Mariela A. Agotegaray
    • 1
  • Verónica L. Lassalle
    • 1
  1. 1.INQUISUR – CONICETUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations