Advertisement

Drug Loading and Release for Specific Diseases

  • Mariela A. Agotegaray
  • Verónica L. Lassalle
Chapter
  • 472 Downloads
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Biomedical applications of solid silica-coated magnetite nanoparticles are not highly reported in literature. Conventional biomedical uses are almost restricted to diagnostic issues. Other magnetic-silica materials such as mesoporous were last explored as target drug delivery.

Among the scarce literature reports, the existent are devoted to the use of solid silica coated magnetic nanoparticles as target drug delivery in the treatment of oncological diseases and in gene delivery and transfection. The use of these kinds of nanosystems as theranostics was also reported in the last few years. In this sense, the possibility is being explored to design a nanocarrier to be useful in more than one diagnostic technique, leading to multiple theranostics tools. In most cases, hard work on the design is required in order to assess selectivity and specificity in their function. To these ends silica coated magnetic nanoparticles are commonly modified with suitable ligands able to interact with biomarkers associated with the disease to treat.

Keywords

Theranostics Targeted drug delivery Specific ligands Drug release 

References

  1. 1.
    Yang, Y., & Yu, C. (2016). Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 317–332.Google Scholar
  2. 2.
    Nagesetti, A., & McGoron, A. J. (2016). Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging. Colloids and Surfaces B: Biointerfaces, 147, 492–500.CrossRefGoogle Scholar
  3. 3.
    Müller, W. E., Boreiko, A., Wang, X., Krasko, A., Geurtsen, W., Custódio, M. R., et al. (2007). Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcified Tissue International, 81(5), 382–393.CrossRefGoogle Scholar
  4. 4.
    Xie, M., Xu, Y., Shen, H., Shen, S., Ge, Y., & Xie, J. (2014). Negative-charge-functionalized mesoporous silica nanoparticles as drug vehicles targeting hepatocellular carcinoma. International Journal of Pharmaceutics, 474(1), 223–231.Google Scholar
  5. 5.
    Wu, X., Wu, M., & Zhao, J. X. (2014). Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 10(2), 297–312.Google Scholar
  6. 6.
    Yazdani, F., Fattahi, B., & Azizi, N. (2016). Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent. Journal of Magnetism and Magnetic Materials, 406, 207–211.CrossRefGoogle Scholar
  7. 7.
    Vivero Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2010). Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 6(18), 1952–1967.CrossRefGoogle Scholar
  8. 8.
    Bae, S. W., Tan, W., & Hong, J. I. (2012). Fluorescent dye-doped silica nanoparticles: New tools for bioapplications. Chemical Communications, 48(17), 2270–2282.CrossRefGoogle Scholar
  9. 9.
    Chitra, K., & Annadurai, G. (2014). Rapid capture and exemplary detection of clinical pathogen using surface modified fluorescent silica coated iron oxide nanoparticles. Biocybernetics and Biomedical Engineering, 34(4), 230–237.CrossRefGoogle Scholar
  10. 10.
    Deng, Z., Zhen, Z., Hu, X., Wu, S., Xu, Z., & Chu, P. K. (2011). Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 32(21), 4976–4986.CrossRefGoogle Scholar
  11. 11.
    Malvindi, M. A., Brunetti, V., Vecchio, G., Galeone, A., Cingolani, R., & Pompa, P. P. (2012). SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale, 4(2), 486–495.CrossRefGoogle Scholar
  12. 12.
    Li, L., Tang, F., Liu, H., Liu, T., Hao, N., Chen, D., et al. (2010). In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano, 4(11), 6874–6882.CrossRefGoogle Scholar
  13. 13.
    Nagalla, R., Liao, Z. W., Webb, A., Flynn, N., & Kolodny, N. (2014). Functionalizing silica-coated iron oxide nanoparticles for imaging and targeted cancer therapeutics (780.3). The FASEB Journal, 28(1 Suppl), 780–783.Google Scholar
  14. 14.
    Chen, F. H., Zhang, L. M., Chen, Q. T., Zhang, Y., & Zhang, Z. J. (2010). Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chemical Communications, 46(45), 8633–8635.CrossRefGoogle Scholar
  15. 15.
    McBain, S. C., Yiu, H. H., & Dobson, J. (2008). Magnetic nanoparticles for gene and drug delivery. International Journal of Nanomedicine, 3(2), 169.Google Scholar
  16. 16.
    Ta, T. K. H., Trinh, M. T., Nguyen, L. V., Nguyen, T. T. M., Nguyen, T. L. T., Thuoc, T. L., et al. (2016). Synthesis and surface functionalization of Fe3O4-SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 505, 376–383.CrossRefGoogle Scholar
  17. 17.
    Tan, W., Wang, K., He, X., Zhao, X. J., Drake, T., Wang, L., et al. (2004). Bionanotechnology based on silica nanoparticles. Medicinal Research Reviews, 24(5), 621–638.CrossRefGoogle Scholar
  18. 18.
    Kneuer, C., Sameti, M., Haltner, E. G., Schiestel, T., Schirra, H., Schmidt, H., et al. (2000). Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. International Journal of Pharmaceutics, 196(2), 257–261.CrossRefGoogle Scholar
  19. 19.
    Frank, J. A., Zywicke, H., Jordan, E. K., Mitchell, J., Lewis, B. K., Miller, B., et al. (2002). Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Academic Radiology, 9(2), S484–S487.CrossRefGoogle Scholar
  20. 20.
    Hwang, J., Lee, E., Kim, J., Seo, Y., Lee, K. H., Hong, J. W., et al. (2016). Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 142, 290–296.CrossRefGoogle Scholar
  21. 21.
    Andreani, T., de Souza, A. L. R., Kiill, C. P., Lorenzón, E. N., Fangueiro, J. F., Calpena, A. C., et al. (2014). Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. International Journal of Pharmaceutics, 473(1), 627–635.CrossRefGoogle Scholar
  22. 22.
    Andreani, T., Kiill, C. P., de Souza, A. L. R., Fangueiro, J. F., Fernandes, L., Doktorovová, S., et al. (2014). Surface engineering of silica nanoparticles for oral insulin delivery: Characterization and cell toxicity studies. Colloids and Surfaces B: Biointerfaces, 123, 916–923.CrossRefGoogle Scholar
  23. 23.
    Liu, D., He, X., Wang, K., He, C., Shi, H., & Jian, L. (2010). Biocompatible silica nanoparticles − insulin conjugates for mesenchymal stem cell adipogenic differentiation. Bioconjugate Chemistry, 21(9), 1673–1684.CrossRefGoogle Scholar
  24. 24.
    Jain, R. N., Huang, X., Das, S., Silva, R., Ivanova, V., Minko, T., et al. (2014). Functionalized mesoporous silica nanoparticles for glucose and pH stimulated release of insulin. Zeitschrift für Anorganische und Allgemeine Chemie, 640(3‐4), 616–623.CrossRefGoogle Scholar
  25. 25.
    Ma, Z. Y., Liu, X. Q., Guan, Y. P., & Liu, H. Z. (2006). Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 275(1), 87–91.CrossRefGoogle Scholar
  26. 26.
    Bardi, G., Malvindi, M. A., Gherardini, L., Costa, M., Pompa, P. P., Cingolani, R., et al. (2010). The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials, 31(25), 6555–6566.CrossRefGoogle Scholar
  27. 27.
    Wortmann, L., Ilyas, S., Niznansky, D., Valldor, M., Arroub, K., Berger, N., et al. (2014). Bioconjugated iron oxide nanocubes: Synthesis, functionalization, and vectorization. ACS Applied Materials & Interfaces, 6(19), 16631–16642.CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Zhang, F., Wang, Y. S., Sun, Y. L., Dong, W. F., Song, J. F., et al. (2011). Magnetic colloidosomes fabricated by Fe3O4–SiO2 hetero-nanorods. Soft Matter, 7(16), 7375–7381.CrossRefGoogle Scholar
  29. 29.
    Andhariya, N., Chudasama, B., Upadhyay, R. V., & Mehta, R. V. (2011). Methylene blue loaded silica encapsulated magnetite nanoparticles: A potential drug delivery vector for photodynamic therapy. International Journal of Nanoscience, 10, 1061–1065.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Mariela A. Agotegaray
    • 1
  • Verónica L. Lassalle
    • 1
  1. 1.INQUISUR – CONICETUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations