Synthesis of Solid Silica-Coated Magnetic Nanoparticles for Drug Targeting

  • Mariela A. Agotegaray
  • Verónica L. Lassalle
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Coating of magnetic nanoparticles is strongly required in order to obtain nanocarriers with suitable properties in terms of stability (low aggregation in aqueous media), surface functionality, and magnetism. Silica appears as an attractive compound to assess these goals. Among preventing aggregation, it is able to provide biocompatibility and the easy linkage of multiple ligands to specific applications.

Methodologies adopted to incorporate a silica layer on a magnetic core are varied; among them the Stöber method is the most widely employed. To a lesser extent, microemulsion, sodium silicate hydrolysis methods, sonochemical method among others are usually used for the synthesis.

From the above mentioned procedures it is feasible to prepare magnetic silica coated nanoparticles or even other kinds of magnetic silica materials. These features are achieved by simply modifying the experimental variables inherent to each method.

A comparison between these methodologies leads to the most adequate preparation technique as a function of the intended applications.


Silica coating Stöber method Microemulsion Hydrolysis 


  1. 1.
    Qu, H., Tong, S., Song, K., Ma, H., Bao, G., Pincus, S., et al. (2013). Controllable in situ synthesis of magnetite coated silica-core water-dispersible hybrid nanomaterials. Langmuir, 29(33), 10573–10578.CrossRefGoogle Scholar
  2. 2.
    Wang, T., Zhang, L., Su, Z., Wang, C., Liao, Y., & Fu, Q. (2011). Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Applied Materials & Interfaces, 3(7), 2479–2486.CrossRefGoogle Scholar
  3. 3.
    Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2008). Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 130(1), 28–29.CrossRefGoogle Scholar
  4. 4.
    Sodipo, B. K., & Aziz, A. A. (2016). Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. Journal of Magnetism and Magnetic Materials, 416, 275–291.CrossRefGoogle Scholar
  5. 5.
    Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69.CrossRefGoogle Scholar
  6. 6.
    Deng, Y. H., Wang, C. C., Hu, J. H., Yang, W. L., & Fu, S. K. (2005). Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262(1), 87–93.CrossRefGoogle Scholar
  7. 7.
    Kobayashi, Y., Horie, M., Konno, M., Rodríguez-González, B., & Liz-Marzán, L. M. (2003). Preparation and properties of silica-coated cobalt nanoparticles. The Journal of Physical Chemistry B, 107(30), 7420–7425.CrossRefGoogle Scholar
  8. 8.
    Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Li, C., et al. (2011). Core-shell Fe3O4@ SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale, 3(2), 701–705.CrossRefGoogle Scholar
  9. 9.
    Kuzminska, M., Carlier, N., Backov, R., & Gaigneaux, E. M. (2015). Magnetic nanoparticles: Improving chemical stability via silica coating and organic grafting with silanes for acidic media catalytic reactions. Applied Catalysis A: General, 505, 200–212.CrossRefGoogle Scholar
  10. 10.
    Kassaee, M. Z., Masrouri, H., & Movahedi, F. (2011). Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Applied Catalysis A: General, 395(1), 28–33.CrossRefGoogle Scholar
  11. 11.
    Lu, Y., Yin, Y., Mayers, B. T., & Xia, Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Letters, 2(3), 183–186.CrossRefGoogle Scholar
  12. 12.
    Barrera, E. G., Livotto, P. R., & dos Santos, J. H. (2016). Hybrid silica bearing different organosilanes produced by the modified Stöber method. Powder Technology, 301, 486–492.CrossRefGoogle Scholar
  13. 13.
    Greasley, S. L., Page, S. J., Sirovica, S., Chen, S., Martin, R. A., Riveiro, A., et al. (2016). Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 469, 213–223.CrossRefGoogle Scholar
  14. 14.
    Hartlen, K. D., Athanasopoulos, A. P., & Kitaev, V. (2008). Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir, 24(5), 1714–1720.CrossRefGoogle Scholar
  15. 15.
    Yokoi, T., Wakabayashi, J., Otsuka, Y., Fan, W., Iwama, M., Watanabe, R., et al. (2009). Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chemistry of Materials, 21(15), 3719–3729.CrossRefGoogle Scholar
  16. 16.
    Yokoi, T., Sakamoto, Y., Terasaki, O., Kubota, Y., Okubo, T., & Tatsumi, T. (2006). Periodic arrangement of silica nanospheres assisted by amino acids. Journal of the American Chemical Society, 128(42), 13664–13665.CrossRefGoogle Scholar
  17. 17.
    Lee, Y. G., Park, J. H., Oh, C., Oh, S. G., & Kim, Y. C. (2007). Preparation of highly monodispersed hybrid silica spheres using a one-step sol-gel reaction in aqueous solution. Langmuir, 23(22), 10875–10878.CrossRefGoogle Scholar
  18. 18.
    Meng, Z., Xue, C., Zhang, Q., Yu, X., Xi, K., & Jia, X. (2009). Preparation of highly monodisperse hybrid silica nanospheres using a one-step emulsion reaction in aqueous solution. Langmuir, 25(14), 7879–7883.CrossRefGoogle Scholar
  19. 19.
    Roy, I., Ohulchanskyy, T. Y., Pudavar, H. E., Bergey, E. J., Oseroff, A. R., Morgan, J., et al. (2003). Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 125(26), 7860–7865.CrossRefGoogle Scholar
  20. 20.
    Bharali, D. J., Klejbor, I., Stachowiak, E. K., Dutta, P., Roy, I., Kaur, N., et al. (2005). Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11539–11544.CrossRefGoogle Scholar
  21. 21.
    Yu-Xiang, Y., Li-Ping, Z., Xiao-Cui, X., Ya-Ni, Z., Jian-Guo, S., & Xiang-Nong, L. (2011). Synthesis of chain-like and core–shell spherical Fe3O4@ SiO2 complex. Advanced Science Letters, 4(1), 96–103.CrossRefGoogle Scholar
  22. 22.
    Lu, Z., Dai, J., Song, X., Wang, G., & Yang, W. (2008). Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1), 450–456.CrossRefGoogle Scholar
  23. 23.
    Rho, W. Y., Kim, H. M., Kyeong, S., Kang, Y. L., Kim, D. H., Kang, H., et al. (2014). Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry, 20(5), 2646–2649.CrossRefGoogle Scholar
  24. 24.
    Mohmood, I., Lopes, C. B., Lopes, I., Tavares, D. S., Soares, A. M., Duarte, A. C., et al. (2016). Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles. Science of the Total Environment, 557, 712–721.CrossRefGoogle Scholar
  25. 25.
    Dung, C. T., Quynh, L. M., Linh, N. P., Nam, N. H., & Luong, N. H. (2016). Synthesis of ZnS: Mn–Fe3O4 bifunctional nanoparticles by inverse microemulsion method. Journal of Science: Advanced Materials and Devices, 1(2), 200–203.Google Scholar
  26. 26.
    Guerrero‐Martínez, A., Pérez‐Juste, J., & Liz‐Marzán, L. M. (2010). Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials, 22(11), 1182–1195.CrossRefGoogle Scholar
  27. 27.
    Li, C., Ma, C., Wang, F., Xi, Z., Wang, Z., Deng, Y., et al. (2012). Preparation and biomedical applications of core–shell silica/magnetic nanoparticle composites. Journal of Nanoscience and Nanotechnology, 12(4), 2964–2972.CrossRefGoogle Scholar
  28. 28.
    Digigow, R. G., Dechézelles, J. F., Dietsch, H., Geissbühler, I., Vanhecke, D., Geers, C., et al. (2014). Preparation and characterization of functional silica hybrid magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 362, 72–79.CrossRefGoogle Scholar
  29. 29.
    Yuan, Y., Rende, D., Altan, C. L., Bucak, S., Ozisik, R., & Borca-Tasciuc, D. A. (2012). Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Langmuir, 28(36), 13051–13059.CrossRefGoogle Scholar
  30. 30.
    Sun, Q., Zhao, G., & Dou, W. (2016). An optical and rapid sandwich immunoassay method for detection of Salmonella pullorum and Salmonella gallinarum based on immune blue silica nanoparticles and magnetic nanoparticles. Sensors and Actuators B: Chemical, 226, 69–75.CrossRefGoogle Scholar
  31. 31.
    Park, J. N., Forman, A. J., Tang, W., Cheng, J., Hu, Y. S., Lin, H., et al. (2008). Highly active and sinter‐resistant Pd‐nanoparticle catalysts encapsulated in silica. Small, 4(10), 1694–1697.CrossRefGoogle Scholar
  32. 32.
    Kishida, M., Tago, T., Hatsuta, T., & Wakabayashi, K. (2000). Preparation of silica-coated rhodium nanoparticles using water-in-oil microemulsion. Chemistry Letters, 9, 1108–1109.CrossRefGoogle Scholar
  33. 33.
    Stjerndahl, M., Andersson, M., Hall, H. E., Pajerowski, D. M., Meisel, M. W., & Duran, R. S. (2008). Superparamagnetic Fe3O4/SiO2 nanocomposites: Enabling the tuning of both the iron oxide load and the size of the nanoparticles. Langmuir, 24(7), 3532–3536.CrossRefGoogle Scholar
  34. 34.
    Lai, C. W., Wang, Y. H., Lai, C. H., Yang, M. J., Chen, C. Y., Chou, P. T., et al. (2008). Iridium‐complex‐functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three‐in‐one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small, 4(2), 218–224.CrossRefGoogle Scholar
  35. 35.
    Lin, Y. S., Wu, S. H., Hung, Y., Chou, Y. H., Chang, C., Lin, M. L., et al. (2006). Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chemistry of Materials, 18(22), 5170–5172.CrossRefGoogle Scholar
  36. 36.
    Lee, J., Lee, Y., Youn, J. K., Na, H. B., Yu, T., Kim, H., et al. (2008). Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high‐performance biocatalysts. Small, 4(1), 143–152.CrossRefGoogle Scholar
  37. 37.
    Xu, H., Cui, L., Tong, N., & Gu, H. (2006). Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. Journal of the American Chemical Society, 128(49), 15582–15583.CrossRefGoogle Scholar
  38. 38.
    Jia, L., & Kitamoto, Y. (2015). Influence of silica coating process on fine structure and magnetic properties of iron oxide nanoparticles. Electrochimica Acta, 183, 148–152.CrossRefGoogle Scholar
  39. 39.
    Zhao, X., Shi, Y., Wang, T., Cai, Y., & Jiang, G. (2008). Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. Journal of Chromatography A, 1188(2), 140–147.CrossRefGoogle Scholar
  40. 40.
    Roto, R., Yusran, Y., & Kuncaka, A. (2016). Magnetic adsorbent of Fe3O4@ SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Applied Surface Science, 377, 30–36.CrossRefGoogle Scholar
  41. 41.
    Lewandowska-Łańcucka, J., Staszewska, M., Szuwarzyński, M., Kępczyński, M., Romek, M., Tokarz, W., et al. (2014). Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell. Journal of Alloys and Compounds, 586, 45–51.CrossRefGoogle Scholar
  42. 42.
    Sodipo, B. K., & Aziz, A. A. (2015). Non-seeded synthesis and characterization of superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles via ultrasound. Ultrasonics Sonochemistry, 23, 354–359.CrossRefGoogle Scholar
  43. 43.
    Abbas, M., Rao, B. P., Islam, M. N., Naga, S. M., Takahashi, M., & Kim, C. (2014). Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process. Ceramics International, 40(1), 1379–1385.CrossRefGoogle Scholar
  44. 44.
    Tartaj, P., del Puerto Morales, M., Veintemillas-Verdaguer, S., González-Carreño, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), R182.CrossRefGoogle Scholar
  45. 45.
    Ruiz-Hernández, E., Lopez-Noriega, A., Arcos, D., Izquierdo-Barba, I., Terasaki, O., & Vallet-Regí, M. (2007). Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials, 19(14), 3455–3463.CrossRefGoogle Scholar
  46. 46.
    Das, H., Arai, T., Debnath, N., Sakamoto, N., Shinozaki, K., Suzuki, H., et al. (2016). Impact of acidic catalyst to coat superparamagnetic magnesium ferrite nanoparticles with silica shell via sol–gel approach. Advanced Powder Technology, 27(2), 541–549.CrossRefGoogle Scholar
  47. 47.
    Takeda, Y., Komori, Y., & Yoshitake, H. (2013). Direct Stöber synthesis of monodisperse silica particles functionalized with mercapto-, vinyl-and aminopropylsilanes in alcohol–water mixed solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 68–74.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Mariela A. Agotegaray
    • 1
  • Verónica L. Lassalle
    • 1
  1. 1.INQUISUR – CONICETUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations