Skip to main content

Synthesis of Solid Silica-Coated Magnetic Nanoparticles for Drug Targeting

  • Chapter
  • First Online:
Silica-coated Magnetic Nanoparticles

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Coating of magnetic nanoparticles is strongly required in order to obtain nanocarriers with suitable properties in terms of stability (low aggregation in aqueous media), surface functionality, and magnetism. Silica appears as an attractive compound to assess these goals. Among preventing aggregation, it is able to provide biocompatibility and the easy linkage of multiple ligands to specific applications.

Methodologies adopted to incorporate a silica layer on a magnetic core are varied; among them the Stöber method is the most widely employed. To a lesser extent, microemulsion, sodium silicate hydrolysis methods, sonochemical method among others are usually used for the synthesis.

From the above mentioned procedures it is feasible to prepare magnetic silica coated nanoparticles or even other kinds of magnetic silica materials. These features are achieved by simply modifying the experimental variables inherent to each method.

A comparison between these methodologies leads to the most adequate preparation technique as a function of the intended applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qu, H., Tong, S., Song, K., Ma, H., Bao, G., Pincus, S., et al. (2013). Controllable in situ synthesis of magnetite coated silica-core water-dispersible hybrid nanomaterials. Langmuir, 29(33), 10573–10578.

    Article  Google Scholar 

  2. Wang, T., Zhang, L., Su, Z., Wang, C., Liao, Y., & Fu, Q. (2011). Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Applied Materials & Interfaces, 3(7), 2479–2486.

    Article  Google Scholar 

  3. Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2008). Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 130(1), 28–29.

    Article  Google Scholar 

  4. Sodipo, B. K., & Aziz, A. A. (2016). Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. Journal of Magnetism and Magnetic Materials, 416, 275–291.

    Article  Google Scholar 

  5. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69.

    Article  Google Scholar 

  6. Deng, Y. H., Wang, C. C., Hu, J. H., Yang, W. L., & Fu, S. K. (2005). Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262(1), 87–93.

    Article  Google Scholar 

  7. Kobayashi, Y., Horie, M., Konno, M., Rodríguez-González, B., & Liz-Marzán, L. M. (2003). Preparation and properties of silica-coated cobalt nanoparticles. The Journal of Physical Chemistry B, 107(30), 7420–7425.

    Article  Google Scholar 

  8. Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Li, C., et al. (2011). Core-shell Fe3O4@ SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale, 3(2), 701–705.

    Article  Google Scholar 

  9. Kuzminska, M., Carlier, N., Backov, R., & Gaigneaux, E. M. (2015). Magnetic nanoparticles: Improving chemical stability via silica coating and organic grafting with silanes for acidic media catalytic reactions. Applied Catalysis A: General, 505, 200–212.

    Article  Google Scholar 

  10. Kassaee, M. Z., Masrouri, H., & Movahedi, F. (2011). Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Applied Catalysis A: General, 395(1), 28–33.

    Article  Google Scholar 

  11. Lu, Y., Yin, Y., Mayers, B. T., & Xia, Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Letters, 2(3), 183–186.

    Article  Google Scholar 

  12. Barrera, E. G., Livotto, P. R., & dos Santos, J. H. (2016). Hybrid silica bearing different organosilanes produced by the modified Stöber method. Powder Technology, 301, 486–492.

    Article  Google Scholar 

  13. Greasley, S. L., Page, S. J., Sirovica, S., Chen, S., Martin, R. A., Riveiro, A., et al. (2016). Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 469, 213–223.

    Article  Google Scholar 

  14. Hartlen, K. D., Athanasopoulos, A. P., & Kitaev, V. (2008). Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir, 24(5), 1714–1720.

    Article  Google Scholar 

  15. Yokoi, T., Wakabayashi, J., Otsuka, Y., Fan, W., Iwama, M., Watanabe, R., et al. (2009). Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chemistry of Materials, 21(15), 3719–3729.

    Article  Google Scholar 

  16. Yokoi, T., Sakamoto, Y., Terasaki, O., Kubota, Y., Okubo, T., & Tatsumi, T. (2006). Periodic arrangement of silica nanospheres assisted by amino acids. Journal of the American Chemical Society, 128(42), 13664–13665.

    Article  Google Scholar 

  17. Lee, Y. G., Park, J. H., Oh, C., Oh, S. G., & Kim, Y. C. (2007). Preparation of highly monodispersed hybrid silica spheres using a one-step sol-gel reaction in aqueous solution. Langmuir, 23(22), 10875–10878.

    Article  Google Scholar 

  18. Meng, Z., Xue, C., Zhang, Q., Yu, X., Xi, K., & Jia, X. (2009). Preparation of highly monodisperse hybrid silica nanospheres using a one-step emulsion reaction in aqueous solution. Langmuir, 25(14), 7879–7883.

    Article  Google Scholar 

  19. Roy, I., Ohulchanskyy, T. Y., Pudavar, H. E., Bergey, E. J., Oseroff, A. R., Morgan, J., et al. (2003). Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 125(26), 7860–7865.

    Article  Google Scholar 

  20. Bharali, D. J., Klejbor, I., Stachowiak, E. K., Dutta, P., Roy, I., Kaur, N., et al. (2005). Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11539–11544.

    Article  Google Scholar 

  21. Yu-Xiang, Y., Li-Ping, Z., Xiao-Cui, X., Ya-Ni, Z., Jian-Guo, S., & Xiang-Nong, L. (2011). Synthesis of chain-like and core–shell spherical Fe3O4@ SiO2 complex. Advanced Science Letters, 4(1), 96–103.

    Article  Google Scholar 

  22. Lu, Z., Dai, J., Song, X., Wang, G., & Yang, W. (2008). Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1), 450–456.

    Article  Google Scholar 

  23. Rho, W. Y., Kim, H. M., Kyeong, S., Kang, Y. L., Kim, D. H., Kang, H., et al. (2014). Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry, 20(5), 2646–2649.

    Article  Google Scholar 

  24. Mohmood, I., Lopes, C. B., Lopes, I., Tavares, D. S., Soares, A. M., Duarte, A. C., et al. (2016). Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles. Science of the Total Environment, 557, 712–721.

    Article  Google Scholar 

  25. Dung, C. T., Quynh, L. M., Linh, N. P., Nam, N. H., & Luong, N. H. (2016). Synthesis of ZnS: Mn–Fe3O4 bifunctional nanoparticles by inverse microemulsion method. Journal of Science: Advanced Materials and Devices, 1(2), 200–203.

    Google Scholar 

  26. Guerrero‐Martínez, A., Pérez‐Juste, J., & Liz‐Marzán, L. M. (2010). Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials, 22(11), 1182–1195.

    Article  Google Scholar 

  27. Li, C., Ma, C., Wang, F., Xi, Z., Wang, Z., Deng, Y., et al. (2012). Preparation and biomedical applications of core–shell silica/magnetic nanoparticle composites. Journal of Nanoscience and Nanotechnology, 12(4), 2964–2972.

    Article  Google Scholar 

  28. Digigow, R. G., Dechézelles, J. F., Dietsch, H., Geissbühler, I., Vanhecke, D., Geers, C., et al. (2014). Preparation and characterization of functional silica hybrid magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 362, 72–79.

    Article  Google Scholar 

  29. Yuan, Y., Rende, D., Altan, C. L., Bucak, S., Ozisik, R., & Borca-Tasciuc, D. A. (2012). Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Langmuir, 28(36), 13051–13059.

    Article  Google Scholar 

  30. Sun, Q., Zhao, G., & Dou, W. (2016). An optical and rapid sandwich immunoassay method for detection of Salmonella pullorum and Salmonella gallinarum based on immune blue silica nanoparticles and magnetic nanoparticles. Sensors and Actuators B: Chemical, 226, 69–75.

    Article  Google Scholar 

  31. Park, J. N., Forman, A. J., Tang, W., Cheng, J., Hu, Y. S., Lin, H., et al. (2008). Highly active and sinter‐resistant Pd‐nanoparticle catalysts encapsulated in silica. Small, 4(10), 1694–1697.

    Article  Google Scholar 

  32. Kishida, M., Tago, T., Hatsuta, T., & Wakabayashi, K. (2000). Preparation of silica-coated rhodium nanoparticles using water-in-oil microemulsion. Chemistry Letters, 9, 1108–1109.

    Article  Google Scholar 

  33. Stjerndahl, M., Andersson, M., Hall, H. E., Pajerowski, D. M., Meisel, M. W., & Duran, R. S. (2008). Superparamagnetic Fe3O4/SiO2 nanocomposites: Enabling the tuning of both the iron oxide load and the size of the nanoparticles. Langmuir, 24(7), 3532–3536.

    Article  Google Scholar 

  34. Lai, C. W., Wang, Y. H., Lai, C. H., Yang, M. J., Chen, C. Y., Chou, P. T., et al. (2008). Iridium‐complex‐functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three‐in‐one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small, 4(2), 218–224.

    Article  Google Scholar 

  35. Lin, Y. S., Wu, S. H., Hung, Y., Chou, Y. H., Chang, C., Lin, M. L., et al. (2006). Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chemistry of Materials, 18(22), 5170–5172.

    Article  Google Scholar 

  36. Lee, J., Lee, Y., Youn, J. K., Na, H. B., Yu, T., Kim, H., et al. (2008). Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high‐performance biocatalysts. Small, 4(1), 143–152.

    Article  Google Scholar 

  37. Xu, H., Cui, L., Tong, N., & Gu, H. (2006). Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. Journal of the American Chemical Society, 128(49), 15582–15583.

    Article  Google Scholar 

  38. Jia, L., & Kitamoto, Y. (2015). Influence of silica coating process on fine structure and magnetic properties of iron oxide nanoparticles. Electrochimica Acta, 183, 148–152.

    Article  Google Scholar 

  39. Zhao, X., Shi, Y., Wang, T., Cai, Y., & Jiang, G. (2008). Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. Journal of Chromatography A, 1188(2), 140–147.

    Article  Google Scholar 

  40. Roto, R., Yusran, Y., & Kuncaka, A. (2016). Magnetic adsorbent of Fe3O4@ SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Applied Surface Science, 377, 30–36.

    Article  Google Scholar 

  41. Lewandowska-Łańcucka, J., Staszewska, M., Szuwarzyński, M., Kępczyński, M., Romek, M., Tokarz, W., et al. (2014). Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell. Journal of Alloys and Compounds, 586, 45–51.

    Article  Google Scholar 

  42. Sodipo, B. K., & Aziz, A. A. (2015). Non-seeded synthesis and characterization of superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles via ultrasound. Ultrasonics Sonochemistry, 23, 354–359.

    Article  Google Scholar 

  43. Abbas, M., Rao, B. P., Islam, M. N., Naga, S. M., Takahashi, M., & Kim, C. (2014). Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process. Ceramics International, 40(1), 1379–1385.

    Article  Google Scholar 

  44. Tartaj, P., del Puerto Morales, M., Veintemillas-Verdaguer, S., González-Carreño, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), R182.

    Article  Google Scholar 

  45. Ruiz-Hernández, E., Lopez-Noriega, A., Arcos, D., Izquierdo-Barba, I., Terasaki, O., & Vallet-Regí, M. (2007). Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials, 19(14), 3455–3463.

    Article  Google Scholar 

  46. Das, H., Arai, T., Debnath, N., Sakamoto, N., Shinozaki, K., Suzuki, H., et al. (2016). Impact of acidic catalyst to coat superparamagnetic magnesium ferrite nanoparticles with silica shell via sol–gel approach. Advanced Powder Technology, 27(2), 541–549.

    Article  Google Scholar 

  47. Takeda, Y., Komori, Y., & Yoshitake, H. (2013). Direct Stöber synthesis of monodisperse silica particles functionalized with mercapto-, vinyl-and aminopropylsilanes in alcohol–water mixed solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 68–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Agotegaray, M.A., Lassalle, V.L. (2017). Synthesis of Solid Silica-Coated Magnetic Nanoparticles for Drug Targeting. In: Silica-coated Magnetic Nanoparticles. SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-50158-1_4

Download citation

Publish with us

Policies and ethics