Silica: Chemical Properties and Biological Features

  • Mariela A. Agotegaray
  • Verónica L. Lassalle
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Silicon dioxide, SiO2, is commonly known as silica. It may be found polymerized alone or in combination with other metals known as silicates.

This Chapter focuses on the biological, physiological, and biomedical issues related to silica. Although it was, in principle, considered as a highly toxic compound, this belief was reverted when several benign natural properties were discovered. In fact, silicon is actually considered as an essential trace element, being the most abundant in the body after iron and zinc. Therefore, several types of silica based materials are actually recognized as highly efficient in several biomedical applications. Among them bioglasses, star gels, mesoporous materials, and solid silica nanoparticles are found. The main applications range from drug delivery systems, target drug delivery, tissue regeneration, and diagnosis. All these applications already require a strict control over the properties of the designed silica materials.


Silica Bioavailability Biomedical applications Drug delivery 


  1. 1.
    Müller, W. E., Wang, X., Chen, A., Hu, S., Gan, L., Schröder, H. C., et al. (2011). The unique invention of the siliceous sponges: Their enzymatically made bio-silica skeleton. In Molecular biomineralization (pp. 251–281). Berlin: Springer.CrossRefGoogle Scholar
  2. 2.
    Schwarz, K., & Milne, D. B. (1972). Growth promoting effects of silicon in rats. Nature, 239, 333–334.CrossRefGoogle Scholar
  3. 3.
    Carlisle, E. M. (1986). Silicon as an essential trace element in animal nutrition. In D. Evered & M. O’Connor (Eds.), Silicon biochemistry. Ciba Foundation Symposium (Vol. 121, pp. 123–139). Chichester: John Wiley and Sons Ltd.Google Scholar
  4. 4.
    Carlisle, E. M. (1972). Silicon: An essential element for the chick. Science, 178, 619.CrossRefGoogle Scholar
  5. 5.
    Jugdaohsingh, R. (2007). Silicon and bone health. The Journal of Nutrition, Health & Aging, 11, 99–110.Google Scholar
  6. 6.
    Reffitt, D. M., Jugdaohsingh, R., Thompson, R. P. H., et al. (1999). Silicic acid: Its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. Journal of Inorganic Biochemistry, 76, 141–147.CrossRefGoogle Scholar
  7. 7.
    Iler, R. K. (1979). The chemistry of silica: Solubility, polymerisation, colloid and surface properties, and biochemistry. New York: John Wiley & Sons.Google Scholar
  8. 8.
    Sripanyakorn, S., Jugdaohsingh, R., Elliott, H., Walker, C., Mehta, P., Shoukru, S., et al. (2004). The silicon content of beer and its bioavailability in healthy volunteers. British Journal of Nutrition, 91, 403–409.Google Scholar
  9. 9.
    Allain, P., Cailleux, A., Mauras, Y., et al. (1983). Digestive absorption of silicon after a single administration in man in the form of methylsilanetriol salicylate (in French). Thérapie, 38, 171–174.Google Scholar
  10. 10.
    Sripanyakorn, S., Jugdaohsingh, R., Dissayabutr, W., Anderson, S. H., Thompson, R. P., & Powell, J. J. (2009). The comparative absorption of silicon from different foods and food supplements. British Journal of Nutrition, 102(06), 825–834.CrossRefGoogle Scholar
  11. 11.
    Anonymous. (1974). Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents anticaking agents. Silicon dioxide and certain silicates (pp. 21–30). Geneva: World Health Organisation.Google Scholar
  12. 12.
    Charnot, Y., & Pérès, G. (1971). Modification de l’absorption et du métabolisme tissulaire du silicium en relation avec l’age, le sehe et diverses glandes endocrines. Lyon Médical, 13, 85.Google Scholar
  13. 13.
    Dobbie, J. W., & Smith, M. J. B. (1986). Urinary and serum silicon in normal and uraemic individuals. In D. Evered & M. O’Connor (Eds.), Silicon biochemistry. Ciba Foundation Symposium (Vol. 121, pp. 194–208). Chichester: John Wiley and Sons Ltd.Google Scholar
  14. 14.
    Vallet-Regí, M., & Balas, F. (2008). Silica materials for medical applications. Open Biomedical Engineering Journal, 2(1), 1–9.CrossRefGoogle Scholar
  15. 15.
    Vallet-Regí, M. (2006). Revisiting ceramics for medical applications. Dalton Transactions, 5211–5220.Google Scholar
  16. 16.
    Vallet-Regí, M., Ragel, C. V., & Salinas, A. J. (2003). Glasses with medical applications. European Journal of Inorganic Chemistry, 2003, 1029–1042.CrossRefGoogle Scholar
  17. 17.
    Zachariasen, W. H. (1932). The atomic arrangements in glass. Journal of the American Chemical Society, 54, 3841–3851.CrossRefGoogle Scholar
  18. 18.
    Harper, C. A. (2001). Handbook of ceramics, glasses and diamonds. Blacklick: McGraw-Hill Professional Pub.Google Scholar
  19. 19.
    Vallet-Regí, M., Salinas, A. J., & Arcos, D. (2006). From the bioactive glasses to the star gels. Journal of Materials Science: Materials in Medicine, 17(11), 1011–1017.Google Scholar
  20. 20.
    Cai, Q., Lin, W.-Y., Xiao, F.-S., Pang, W.-Q., Chen, X.-H., & Zou, B.-S. (1999). The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous and Mesoporous Materials, 32, 1–15.CrossRefGoogle Scholar
  21. 21.
    Wu, S. H., Mou, C. Y., & Lin, H. P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862–3875.CrossRefGoogle Scholar
  22. 22.
    Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., et al. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834–10843.CrossRefGoogle Scholar
  23. 23.
    Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredricksson, G. H., Chmelka, B. F., et al. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548–552.CrossRefGoogle Scholar
  24. 24.
    Vallet-Regi, M., Rámila, A., del Real, R. P., & Pérez-Pariente, J. (2001). A new property of MCM-41: Drug delivery system. Chemistry of Materials, 13, 308–311.CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., et al. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313–327.Google Scholar
  26. 26.
    Hu, Y., Zhi, Z., Wang, T., Jiang, T., & Wang, S. (2011). Incorporation of indomethacin nanoparticles into 3-D ordered macroporous silica for enhanced dissolution and reduced gastric irritancy. European Journal of Pharmaceutics and Biopharmaceutics, 79, 544–551.CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Sun, L., Jiang, T., Zhang, J., Zhang, C., Sun, C., et al. (2014). The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol. Drug Development and Industrial Pharmacy, 40, 819–828.CrossRefGoogle Scholar
  28. 28.
    Bossaert, W. D., De Vos, D. E., Van Rhijn, W. M., Bullen, J., Grobet, P. J., & Jacobs, P. A. (1999). Mesoporous sulfonic acids as selective heterogeneous catalysts for the synthesis of monoglycerides. Journal of Catalysis, 182, 156–164.CrossRefGoogle Scholar
  29. 29.
    Tang, L., Gabrielson, N. P., Uckun, F. M., Fan, T. M., & Cheng, J. (2013). Size-dependent tumor penetration and in vivo efficacy of monodisperse drug–silica nanoconjugates. Molecular Pharmaceutics, 10, 883–892.CrossRefGoogle Scholar
  30. 30.
    Pan, L., He, Q., Liu, J., Chen, Y., Ma, M., Zhang, L., et al. (2012). Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. Journal of the American Chemical Society, 134, 5722–5725.CrossRefGoogle Scholar
  31. 31.
    Zhu, Y., Ikoma, T., Hanagata, N., & Kaskel, S. (2010). Rattle-type Fe3O4@ SiO2 hollow mesoporous spheres as carriers for drug delivery. Small, 6, 471–478.CrossRefGoogle Scholar
  32. 32.
    Huang, S., Yang, P., Cheng, Z., Li, C., Fan, Y., Kong, D., et al. (2008). Synthesis and characterization of magnetic Fe × O y@ SBA-15 composites with different morphologies for controlled drug release and targeting. Journal of Physical Chemistry C, 112, 7130–7137.CrossRefGoogle Scholar
  33. 33.
    Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials, 34, 1364–1371.CrossRefGoogle Scholar
  34. 34.
    Chan, M. H., & Lin, H. M. (2015). Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials, 46, 149–158.CrossRefGoogle Scholar
  35. 35.
    Lin, Y. S., Hurley, K. R., & Haynes, C. L. (2012). Critical considerations in the biomedical use of mesoporous silica nanoparticles. Journal of Physical Chemistry Letters, 3(3), 364–374.CrossRefGoogle Scholar
  36. 36.
    Halas, N. J. (2008). Nanoscience under glass: The versatile chemistry of silica nanostructures. ACS Nano, 2(2), 179–183.CrossRefGoogle Scholar
  37. 37.
    Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62–69.Google Scholar
  38. 38.
    Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K., & Makino, K. (2005). A novel method for synthesis of silica nanoparticles. Journal of Colloid and Interface Science, 289(1), 125–131.CrossRefGoogle Scholar
  39. 39.
    Liz-Marzán, L. M., Giersig, M., & Mulvaney, P. (1996). Synthesis of nanosized gold-silica core-shell particles. Langmuir, 12(18), 4329–4335.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Mariela A. Agotegaray
    • 1
  • Verónica L. Lassalle
    • 1
  1. 1.INQUISUR – CONICETUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations