Magnetic Nanoparticles as Drug Delivery Devices

  • Mariela A. Agotegaray
  • Verónica L. Lassalle
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Nano-size in combination with magnetic properties gave rise to novel nanomaterials with improved properties, especially with regard to biomedical applications. This chapter is devoted to show the strong relationship between the design of nanoparticles and the final properties able to define its efficiency to the desired applications.

According to the literature, several inorganic materials may be chosen to assess magnetic nanodevices, however the iron oxides, such as magnetite and maghemite, are the preferred for several reasons. The property of superparamagnetism becomes crucial when the practical implementation of these nanosystems is intended in the biomedical field. This, and other properties strongly linked to the efficiency in biomedical applications are defined during the synthetic pathways. The most common preparative methods are here described highlighting the advantages and disadvantages as well as the properties of the obtained magnetic nanoparticles.

Coating of magnetic cores is strictly necessary to assess the interest and specific properties required for biomedical uses. In this regard, a classification of the most useful coatings is included highlighting the properties conferred by the selected coating material.

Characterization techniques able to evaluate the size, surface charge, functionality, and magnetism were also reported as a guide.


Superparamagnetism Co-precipitation Microemulsion Size Shape 


  1. 1.
    Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Development Research, 67(1), 55–60.CrossRefGoogle Scholar
  2. 2.
    Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265.CrossRefGoogle Scholar
  3. 3.
    Senyei, A., Widder, K., & Czerlinski, C. (1978). Magnetic guidance of drug carrying microspheres. Journal of Applied Physics, 49, 3578–3583.CrossRefGoogle Scholar
  4. 4.
    Gubin, S. P., Koksharov, Y. A., Khomutov, G. B., & Yurkov, G. Y. (2005). Magnetic nanoparticles: Preparation, structure and properties. Russian Chemical Reviews, 74, 489–520.CrossRefGoogle Scholar
  5. 5.
    Frenkel, J., & Doefman, J. (1930). Spontaneous and induced magnetisation in ferromagnetic bodies. Nature, 126, 274–275.CrossRefGoogle Scholar
  6. 6.
    Kittel, C. (1946). Theory of the structure of ferromagnetic domains in films and small particles. Physics Review, 70, 965–971.CrossRefGoogle Scholar
  7. 7.
    Mørup, S., Hansen, M. F., & Frandsen, C. (2011). Magnetic nanoparticles. In G. Scholes, G. Wiederrecht, & D. Andrews (Eds.), Comprehensive Nanoscience and Technology (pp. 437–491). Amsterdam, The Netherlands: Elsevier.Google Scholar
  8. 8.
    Bean, C. P., & Livingston, J. D. (1959). Superparamagnetism. Journal of Applied Physics, 30, 120S–129S.CrossRefGoogle Scholar
  9. 9.
    Bedanta, S., & Kleemann, W. (2009). Supermagnetism. Journal of Physics D, 42, 013001.CrossRefGoogle Scholar
  10. 10.
    Chouly, C., Pouliquen, D., Lucet, I., Jeune, J., & Jallet, P. (1996). Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 13, 245–255.Google Scholar
  11. 11.
    Jain, T. K., Reddy, M. K., Morales, M. A., et al. (2008). Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular Pharmaceutics, 5(2), 316–327.CrossRefGoogle Scholar
  12. 12.
    Mojica Pisciotti, M. L., Lima, E., Jr., Vasquez Mansilla, M. M., et al. (2014). In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: Magnetic targeting. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102, 860–868.CrossRefGoogle Scholar
  13. 13.
    Agotegaray, M., Campelo, A., Zysler, R., Gumilar, F., Bras, C., Minetti, A., et al. (2016). Influence of chitosan coating on magnetic nanoparticles in endothelial cells and acute tissue biodistribution. Journal of Biomaterials Science. doi: 10.1080/09205063.2016.1170417.Google Scholar
  14. 14.
    Aggarwal, P., Hall, J. B., McLeland, C. B., et al. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeuic efficacy. Advanced Drug Delivery Reviews, 61, 428–437.CrossRefGoogle Scholar
  15. 15.
    Papisov, M. I., Bogdanov, A., Jr., Schaffer, B., et al. (1993). Colloidal magnetic resonance contrast agents: Effect of particle surface on biodistribution. Journal of Magnetism and Magnetic Materials, 122, 383–386.CrossRefGoogle Scholar
  16. 16.
    Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structures, properties, reactions, occurences and used. Weinheim: Wiley.CrossRefGoogle Scholar
  17. 17.
    Pereira, C., et al. (2012). Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: Tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chemistry of Materials, 24, 1496.CrossRefGoogle Scholar
  18. 18.
    Niendorf, T., Brenne, F., Hoyer, P., Schwarze, D., Schaper, M., Grothe, R., et al. (2015). Processing of new materials by additive manufacturing: Iron-based alloys containing silver for biomedical applications. Metallurgical and Materials Transactions A, 46(7), 2829–2833.CrossRefGoogle Scholar
  19. 19.
    Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17, 1247.CrossRefGoogle Scholar
  20. 20.
    Wu, W., He, Q. G., Hu, R., Huang, J. K., & Chen, H. (2007). Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metals Materials And Engineering, 36, 238.Google Scholar
  21. 21.
    Wu, S., Sun, A. Z., Zhai, F. Q., Wang, J., Xu, W. H., Zhang, Q., et al. (2011). Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters, 65, 1882.CrossRefGoogle Scholar
  22. 22.
    Mascolo, M. C., Pei, Y., & Ring, T. A. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials, 6(12), 5549–5567.CrossRefGoogle Scholar
  23. 23.
    Azcona, P., Zysler, R., & Lassalle, V. (2016). Simple and novel strategies to achieve shape and size control of magnetite nanoparticles intended for biomedical applications. Colloid Surface A, 504, 320–330.CrossRefGoogle Scholar
  24. 24.
    Nicolás, P., Saleta, M., Troiani, H., Zysler, R., Lassalle, V., & Ferreira, M. L. (2013). Preparation of iron oxide nanoparticles stabilized with biomolecules: Experimental and mechanistic issues. Acta Biomaterialia, 9(1), 4754–4762.CrossRefGoogle Scholar
  25. 25.
    Arsalani, N., Fattahi, H., & Nazarpoor, M. (2010). Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polymer Letters, 4(6), 329–338.CrossRefGoogle Scholar
  26. 26.
    Sun, S., & Zeng, H. (2002). Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124, 8204.CrossRefGoogle Scholar
  27. 27.
    Li, Z., Tan, B., Allix, M., Cooper, A. I., & Rosseinsky, M. J. (2008). Direct coprecipitation route to monodisperse dualfunctionalized magnetic iron oxide nanocrystals without size selection. Small, 4, 231.CrossRefGoogle Scholar
  28. 28.
    Wu, W., He, Q. G., & Jiang, C. Z. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3, 397.CrossRefGoogle Scholar
  29. 29.
    Walton, R. I. (2002). Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 31, 230.CrossRefGoogle Scholar
  30. 30.
    Pandey, S., & Mishra, S. (2011). Sol–gel derived organic–inorganic hybrid materials: Synthesis, characterizations and applications. Journal of Sol-Gel Science and Technology, 59, 73.CrossRefGoogle Scholar
  31. 31.
    Caruntu, D., Caruntu, G., & O’Connor, C. J. (2007). Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. Journal of Physics D: Applied Physics, 40, 5801.CrossRefGoogle Scholar
  32. 32.
    Okoli, C., Sanchez-Dominguez, M., Boutonnet, M., Järås, S., Civera, C., Solans, C., et al. (2012). Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir, 28, 8479.CrossRefGoogle Scholar
  33. 33.
    Xu, H., Zeiger, B. W., & Suslick, K. S. (2013). Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 42, 2555.CrossRefGoogle Scholar
  34. 34.
    Hu, L., Percheron, A., Chaumont, D., & Brachais, C. H. (2011). Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: Magnetite, maghemite and hematite. Journal of Sol-Gel Science and Technology, 60, 198.CrossRefGoogle Scholar
  35. 35.
    Jiang, F. Y., Wang, C. M., Fu, Y., & Liu, R. C. (2010). Synthesis of iron oxide nanocubes via microwave-assisted solvolthermal method. Journal of Alloys and Compounds, 503, L31.CrossRefGoogle Scholar
  36. 36.
    Prathna, T. C., Mathew, L., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2010). Biomimetic synthesis of nanoparticles: Science, technology & applicability. In A. Mukherjee (Ed.), Biomimetics learning from nature. Rijeka: InTech.Google Scholar
  37. 37.
    Starowicz, M., Starowicz, P., Żukrowski, J., Przewoźnik, J., Lemański, A., Kapusta, C., et al. (2011). Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. Journal of Nanoparticle Research, 13, 7167.CrossRefGoogle Scholar
  38. 38.
    Salazar-Alvarez, G., Muhammed, M., & Zagorodni, A. A. (2006). Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chemical Engineering Science, 61, 4625.CrossRefGoogle Scholar
  39. 39.
    Costo, R., Bello, V., Robic, C., Port, M., Marco, J. F., Puerto Morales, M., et al. (2011). Ultrasmall iron oxide nanoparticles for biomedical applications: Improving the colloidal and magnetic properties. Langmuir, 28, 178.CrossRefGoogle Scholar
  40. 40.
    Sayed, F. N., & Polshettiwar, V. (2015). Facile and sustainable synthesis of shaped iron oxide nanoparticles: Effect of iron precursor salts on the shapes of iron oxides. Scientific Reports, 5, 9733.CrossRefGoogle Scholar
  41. 41.
    Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., & Tan, W. H. (2001). Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir, 17, 2900.Google Scholar
  42. 42.
    Yang, H. H., Zhang, S. Q., Chen, X. L., Zhuang, Z. X., Xu, J. G., & Wang, X. R. (2004). Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Analytical Chemistry, 76, 1316.Google Scholar
  43. 43.
    Barbeta, V. B., Jardim, R. F., Kiyohara, P. K., Effenberger, F. B., & Rossi, L. M. (2010). Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. Journal of Applied Physics, 107, 073913.CrossRefGoogle Scholar
  44. 44.
    Song, M., Zhang, Y., Hu, S., Song, L., Dong, J., Chen, Z., et al. (2012). Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 408, 114.CrossRefGoogle Scholar
  45. 45.
    Okuda, M., Eloi, J.-C., Jones, S. E. W., Sarua, A., Richardson, R. M., & Schwarzacher, W. (2012). Fe3O4 nanoparticles: Protein-mediated crystalline magnetic superstructures. Nanotechnology, 23, 415601.CrossRefGoogle Scholar
  46. 46.
    Lübbe, A. S., Bergemann, C., Riess, H., Schriever, F., Reichardt, P., Possinger, K., et al. (1996). Clinical experiences with magnetic drug targeting: A phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Research, 56(20), 4686–4693.Google Scholar
  47. 47.
    Wilson, M. W., Kerlan, R. K., Jr., Fidelman, N. A., Venook, A. P., LaBerge, J. M., Koda, J., et al. (2004). Hepatocellular carcinoma: Regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—Initial experience with four patients. Radiology, 230(1), 287–293.CrossRefGoogle Scholar
  48. 48.
    Koda, J., Venook, A., Walser, E., & Goodwin, S. (2002). A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. European Journal of Cancer, 38, S18.Google Scholar
  49. 49.
    Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldöfner, N., Scholz, R., et al. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. International Journal of Hyperthermia, 21, 637–647.CrossRefGoogle Scholar
  50. 50.
    Johannsen, M., Jordan, A., Scholz, R., Lein, M., Koch, M., Deger, S., et al. (2004). Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. Journal of Endourology, 18, 495–500.CrossRefGoogle Scholar
  51. 51.
    Johannsen, M., Thiesen, B., Jordan, A., Taymoorian, K., Gneveckow, U., Waldöfner, N., et al. (2005). Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate, 64, 283–292.CrossRefGoogle Scholar
  52. 52.
    Johannsen, M., Thiesen, B., Gneveckow, U., Taymoorian, K., Waldöfner, N., Scholz, R., et al. (2006). Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate, 66, 97–104.CrossRefGoogle Scholar
  53. 53.
    Johannsen, M., Gneveckow, U., Thiesen, B., Taymoorian, K., Cho, C. H., Waldöfner, N., et al. (2007). Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging and three-dimensional temperature distribution. European Urology, 52, 1653–1661.CrossRefGoogle Scholar
  54. 54.
    Johannsen, M., Thiesen, B., Wust, P., & Jordan, A. (2010). Magnetic nanoparticle hyperthermia for prostate cancer. International Journal of Hyperthermia, 26(8), 790–795.CrossRefGoogle Scholar
  55. 55.
    Hola, K., Markova, Z., Zoppellaro, G., Tucek, J., & Zboril, R. (2015). Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnology Advances, 33(6), 1162–1176.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Mariela A. Agotegaray
    • 1
  • Verónica L. Lassalle
    • 1
  1. 1.INQUISUR – CONICETUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations