The Mesoproterozoic Basement at the San Rafael Block, Mendoza Province (Argentina): Geochemical and Isotopic Age Constraints

Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


This work provides new petro-geochemical and isotopic information to constrain the crustal evolution of the Precambrian Cerro La Ventana Formation. The Rb–Sr, Sm–Nd, Pb–Pb, and U–Pb isotopic data obtained as well as their petrological and geochemical features are reported. These data are useful to discuss relationships with equivalent Mesoproterozoic units located along the Cuyania terrane in the proto-Andean Gondwana margin. The type section of the basement rocks of the Cerro La Ventana Formation is located in the south-eastern part of the San Rafael Block, Mendoza Province known as Leones-Ponón Trehué-La Estrechura region. Equivalent crustal fragments are also included in this basement, such as ductile-deformed rocks of the El Nihuil Mafic Unit that are intruded by Ordovician undeformed dolerites. The basement exposed along the type section corresponds to a metamorphosed volcano-plutonic complex with hardly any sedimentary protolith. Main rocks are tonalites and foliated gabbros and quartz diorites that pass to amphibolites, and minor granodioritic–dioritic orthogneisses, with abundant angular microgranitoid enclaves now deformed and stretched intruded in mafic to felsic metavolcanics with porphyritic relic textures. The studied samples classified as tonalites and some close to the field of granodiorites following a calc-alkaline trend. Gabbroic samples from the El Nihuil mafic unit show a more tholeiitic signature. The bulk of samples from the Cerro La Ventana Formation plot within the field of metaluminous rocks; although a few are in the peraluminous field. Main groups of samples plot as low-Al TTD field; however, some of them show high Sr/Y ratios which are typical of high-Al TTD. The Mg#/K ratio is higher in the Cerro La Ventana Formation compared with Las Matras TTG series suggesting a minor differentiated grade for the first one. The chondrite-normalized REE diagrams for Leones samples have Eu anomalies rather positive and gabbros from El Nihuil region display patterns with positive Eu anomalies typical of plagioclase-rich igneous rocks. The Rb–Sr data defined an isochron with 1148 ± 83 Ma, initial 87Sr/86Sr = 0.70292 ± 0.00018. The low initial ratio is indicative of a slight evolved Mesoproterozoic source. An acceptable isochron was obtained using Sm–Nd methodology indicating an age of 1228 ± 63 Ma. The model ages (TDM) are in the range 1.23–1.64 Ga with εNd(1200) in between −0.94 and +4.7 recording a ‘depleted’ source, less evolved than CHUR for the time of crystallization. In a 207Pb/204Pb diagram the samples plot similarly to rocks from the basement of Cuyania Terrane (Pie de Palo Range and crustal xenoliths) showing a distinctive non-radiogenic signature. The tonalitic lithofacies located at the Leones River type section was chosen for zircon U–Pb TIMS dating and the obtained crystallization age was 1214.7 ± 6.5 Ma. The in situ U–Pb (LA-ICP-MS) zircon data done in two different laboratories on samples from El Nihuil mafic unit (tonalitic orthogneisses) plotted in a Concordia diagram, record an intercept at 1256 ± 10 Ma and in Tera-Wasserburg diagram an age of 1222 ± 6.9 Ma. With these isotopic data we confirm the Mesoproterozoic age for the basement of the San Rafael Block. The obtained ca. 1.2 Ga is quite similar to those belonging to the basement of other regions from the Cuyania allochthonous terrane.


Cuyania terrane San Rafael Block Cerro La Ventana Formation Mesoproterozoic basement Geochemistry Geochronology 



Field and laboratory works were financially supported by CONICET (grants PIPs 0647, 199), ANPCyT (grant PICT 07-10829) and University of La Plata (Projects 11/573, 11/704). We thank to colleagues Pablo González, Leandro Ortiz, and Diego Licitra for field work assistance and suggestions on metamorphic structural data. Luis Dalla Salda during 2001–2003 period and Alejandro Ribot, more recently, provide their expertise in discussion on petrographic description of samples. Thanks to Marcio Pimentel and Koji Kawashita for helping us in U–Pb laboratory work and data interpretation. Mario Campaña helps us with technical assistance. We are grateful to Víctor Ramos for his comments and discussions. Finally, we acknowledge to Agapito Aguilera and Domingo Solorza as field guide experts (‘baqueanos’) near the Leones River and El Nihuil town.

Supplementary material


  1. Abre P, Cingolani CA, Zimmermann U, Cairncross B, Chemale Jr F (2011) Provenance of Ordovician clastic sequences of the San Rafael Block (Central Argentina), with emphasis on the Ponón Trehué Formation. Gondwana Res 19(1):275–290CrossRefGoogle Scholar
  2. Abre P, Cingolani CA, Uriz NJ (this volume) Sedimentary provenance analysis of the Ordovician Ponón Trehué Formation, San Rafael Block, Mendoza-Argentina. In: Cingolani C (ed) Pre-Carboniferous evolution of the San Rafael Block, Argentina. Implications in the SW Gondwana margin. Springer, BerlinGoogle Scholar
  3. Astini R, Ramos VA, Benedetto JL, Vaccari NE, Cañas FL (1996) La Precordillera: un terreno exótico a Gondwana. 13° Congreso Geológico Argentino y 3° Congreso de Exploración de Hidrocarburos, 5:293–324. Buenos AiresGoogle Scholar
  4. Astini RA (2002) Los conglomerados basales del Ordovícico de Ponón Trehué (Mendoza) y su significado en la historia sedimentaria del terreno exótico de Precordillera. Revista de la Asociación Geológica Argentina 57:19–34Google Scholar
  5. Barker F (1979) Trondhjemite: definition, environment, and hypotheses of origin, pp 1–12. In Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, 659 pGoogle Scholar
  6. Batchelor AR, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameter. Chem Geol 48(1985):43–55CrossRefGoogle Scholar
  7. Bordonaro OL, Keller M, Lehnert O (1996) El Ordovícico de Ponon-Trehue en la provincia de Mendoza (Argentina): redefiniciones estratigráficas. 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos 1:541–550Google Scholar
  8. Bühn B, Pimentel MM, Matteini M, Dantas EL (2009) High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-IC-MS). Anais da Academia Brasileira de Ciências 81(1):1–16CrossRefGoogle Scholar
  9. Caminos R (1993) El Basamento Metamórfico Proterozoico-Paleozoico inferior. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. XII Congreso Geológico Argentino and II Congreso de Exploración de Hidrocarburos, Buenos Aires, pp 11–19Google Scholar
  10. Casquet C, Pankhurst RJ, Fanning CM, Baldo E, Galindo C, Rapela CW, González-Casado JM, Dahlquist JA (2006) U-Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera terrane. Gondwana Res 9:524–529CrossRefGoogle Scholar
  11. Cingolani CA, Varela R (1999) The San Rafael Block, Mendoza (Argentina): Rb-Sr isotopic age of basement rocks. II South American Symposium on Isotope Geology, Anales 34 SEGEMAR, Actas 23–26. Carlos Paz, CórdobaGoogle Scholar
  12. Cingolani CA, Llambías EJ, Ortiz LR (2000) Magmatismo básico pre-Carbónico de El Nihuil, Bloque de San Rafael, Provincia de Mendoza, Argentina. 9° Congreso Geológico Chileno 2:717–721, Puerto VarasGoogle Scholar
  13. Cingolani CA, Llambías EJ, Basei MAS, Varela R, Chemale Jr F, Abre P (2005) Grenvillian and Famatinian-age igneous events in the San Rafael Block, Mendoza Province, Argentina: geochemical and isotopic constraints. Gondwana 12 conference, Abstracts 102, MendozaGoogle Scholar
  14. Cingolani CA, Basei MAS, Uriz NJ, Manassero MJ (2012a) Las metasedimentitas del Paleozoico Medio en el subsuelo de Mendoza (Corral de Lorca): su importancia en la evolución tectónica del Terreno Cuyania. XV Reunión de Tectónica. San Juan, Argentina. Octubre 2012, pp 38–39Google Scholar
  15. Cingolani C, Uriz N, Marques J, Pimentel M (2012b) The Mesoproterozoic U-Pb (LA-ICP-MS) age of the Loma Alta Gneissic rocks: basement remnant of the San Rafael Block, Cuyania Terrane, Argentina. In: Proceedings of 8° South American Symposium on Isotope Geology. CD-ROM version. Medellín, Colombia. Abstract, p 140Google Scholar
  16. Cingolani CA, Uriz NJ, Manassero M, Basei MAS (2014) La Formación Cerro Las Pacas al sur del Cerro Nevado, Mendoza: ¿Basamento Precámbrico o parte de la cuenca devónica de San Rafael? XIX Congreso Geológico Argentino. Córdoba. Argentina. Acta CD-ROM. Resumen: Tectónica Preandina, S21-11Google Scholar
  17. Cingolani CA, Llambías EJ, Chemale Jr F, Abre P, Uriz NJ (this volume) Lower Paleozoic ‘El Nihuil Dolerites’: Geochemical and isotopic constraints of mafic magmatism in an extensional setting of the San Rafael Block, Mendoza, Argentina. In: Cingolani C (ed) Pre-Carboniferous evolution of the San Rafael Block, Argentina. Implications in the SW Gondwana margin. Springer, BerlinGoogle Scholar
  18. Criado Roqué P (1972) Bloque de San Rafael. In: Leanza AF (ed) Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba, pp 283–295Google Scholar
  19. Criado Roqué P (1979) Subcuenca de Alvear. Segundo Simposio de Geología Regional Argentina v1. Academia Nacional de Ciencias, Córdoba, pp 811–836Google Scholar
  20. Criado Roqué P, Ibáñez G (1979) Provincia geológica Sanrafaelino-Pampeana. Geología Regional Argentina, Academia Nacional de Ciencias de Córdoba 1:837–869Google Scholar
  21. Dalla Salda L, Cingolani C, Varela R (1992) Early Paleozoic orogenic belt of the Andes in southwestern South America: result of Laurentia-Gondwana collision? Geology 20:617–620CrossRefGoogle Scholar
  22. Davicino RE, Sabalúa JC (1990) El Cuerpo Básico de El Nihuil, Dto. San Rafael, Pcia. de Mendoza, Rep. Argentina. 11° Congreso Geológico Argentino, Actas I, 43–47. San JuanGoogle Scholar
  23. DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291:193–196CrossRefGoogle Scholar
  24. Dessanti RN (1956) Descripción geológica de la Hoja 27c-cerro Diamante (Provincia de Mendoza). Dirección Nacional de Geología y Minería. Boletín 85, 79 p. Buenos AiresGoogle Scholar
  25. Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 95 (B13):21503–21521Google Scholar
  26. Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New YorkGoogle Scholar
  27. Hamilton PJ, O’Nions RK, Bridgwater D, Nutman A (1983) Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth’s early history. Earth Planet Sci Lett 62:263–272CrossRefGoogle Scholar
  28. Heredia S (1996) El Ordovícico del Arroyo Ponón Trehué, sur de la provincia de Mendoza. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Actas I, 601–605Google Scholar
  29. Heredia S (2006) Revisión estratigráfica de la Formación Ponón Trehué (Ordovícico), Bloque de San Rafael, Mendoza. INSUGEO, Serie Correlación Geológica 21:59–74Google Scholar
  30. Heredia S, Mestre A (this volume) Ordovician conodont biostratigraphy of the Ponón Trehué Formation, San Rafael Block, Mendoza, Argentina. In: Cingolani C (ed) Pre-Carboniferous evolution of the San Rafael Block, Argentina. Implications in the SW Gondwana margin. Springer, BerlinGoogle Scholar
  31. Holmberg E (1973) Descripción Geológica de la Hoja 29d, Cerro Nevado. Servicio Geológico Minero Argentino (SEGEMAR), Boletín 144. Buenos Aires, p 71Google Scholar
  32. Keller M (1999). Argentine Precordillera. Sedimentary and plate tectonic history of a Laurentian crustal fragment in South America. The Geological Society of America, Special Paper 341, pp 1–131Google Scholar
  33. Krogh TE (1973) A low-contamination method for hydrothermal decomposition of Zircon an extraction of U and Pb for isotopic age determinations. Geochemica et Cosmochimica Acta 37(3):485–494CrossRefGoogle Scholar
  34. Kumar A, Heaman LH, Manikyamba C (2007) Mesoproterozoic kimberlites in south India: a possible link to ~1.1 Ga global magmatism. Precambrian Res 154:192–204CrossRefGoogle Scholar
  35. Ludwig KR (1999) Using Isoplot/Ex, version 2. A geochronological toolkit for Microsoft excel. Berkeley Geochronological Center, Special Publication 1a, 47 pGoogle Scholar
  36. Ludwig KR (2001) Squid 1.02: a user manual. Berkeley Geochronology Center, Special Publication, 2, 19 pGoogle Scholar
  37. Ludwig KR (2003) Isoplot/EX version 3.0, A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special PublicationGoogle Scholar
  38. Ludwig KR (2012) A geochronological toolkit for Microsoft Excel, version 3.76. Berkeley Geochronology Center, Special Publication No 5, Berkeley, 75 pGoogle Scholar
  39. Morata D, Castro de Machuca B, Arancibia G, Pontoriero S, Fanning CM (2010) Peraluminous Grenvillian TTG in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina: petrology, geochronology, geochemistry and petrogenetic implications. Precambr Res 177(2010):208–322Google Scholar
  40. Nuñez E (1962) Sobre la presencia del Paleozoico inferior fosilífero en el Bloque de San Rafael. Primeras Jornadas Geológicas Argentinas, II:185–189. Buenos AiresGoogle Scholar
  41. Nuñez E (1976) Descripción geológica de la Hoja 28-C “Nihuil”, Provincia de Mendoza. Servicio Geológico Nacional. Buenos Aires (unpublished report)Google Scholar
  42. Nuñez E (1979) Descripción geológica de la Hoja 28d, Estación Soitué, Provincia de Mendoza. Servicio Geológico Nacional, Boletín 166:1–67Google Scholar
  43. Padula E (1949) Descripción geológica de la Hoja 28-C “El Nihuil”, Provincia de Mendoza. YPF (unpublished report)Google Scholar
  44. Padula E (1951) Contribución al conocimiento geológico del ambiente de la Cordillera Frontal, Sierra Pintada, San Rafael (Mendoza). Revista de la Asociación Geológica Argentina 6(1):5–13. Buenos AiresGoogle Scholar
  45. Polanski J (1949) El bloque de San Rafael. Dirección de Minas de Mendoza (unpublished report), MendozaGoogle Scholar
  46. Ramos VA (1995) Sudamérica: Un mosaico de continentes y océanos. Ciencia Hoy 6(32):24–29. Buenos AiresGoogle Scholar
  47. Ramos VA, Dallmeyer RD, Vujovich G (1999) Time constraints on the Early Palaeozoic docking of the Precordillera, central Argentina. In Pankhurst RJ, Rapela CW (eds) The Proto–Andean Margin of Gondwana. Geological Society, Special Publications, 142, London, pp 143–158Google Scholar
  48. Ramos VA (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res 7:1009–1026CrossRefGoogle Scholar
  49. Ramos VA, Jordan T, Allmendinger R, Mpodozis C, Kay S, Cortés J, Palma M (1986) Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics 5:855–888CrossRefGoogle Scholar
  50. Ramos VA, Dallmeyer R, Vujovich GI (1998) Time constrains on the Early Paleozoic docking of the Precordillera central Argentina. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geological Society of London, Special Publication, 142, pp 143–158Google Scholar
  51. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Galindo C, Fanning CM, Dahlquist JM (2010) The Western Sierras Pampeanas: protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction-accretion at continental edge and AMCG intraplate magmatism. J South Am Earth Sci 29:105–127CrossRefGoogle Scholar
  52. Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356CrossRefGoogle Scholar
  53. Rolleri EO, Criado Roqué P (1970) Geología de la Provincia de Mendoza. IV Jornadas Geológicas Argentinas (Mendoza, 1969), II:1–60. Buenos AiresGoogle Scholar
  54. Rolleri EO, Fernández Garrasino CA (1979) Comarca septentrional de Mendoza. Segundo Simposio de Geología Regional Argentina, vol 1. Academia Nacional de Ciencias, Córdoba, pp 771–800Google Scholar
  55. Sato AM, Tickyj H, Llambías EJ, Sato K (2000) The Las Matras tonalitic-trondhjemitic pluton, central Argentina: Grenvillian-age constraints, geochemical characteristics, and regional implications. J S Am Earth Sci 13:587–610CrossRefGoogle Scholar
  56. Sato AM, Tickyj H, Llambías EJ, Basei MAS, González PD (2004) Las Matras Block, Central Argentina (37°S-67°W): the Southernmost Cuyania Terrane and its Relationship with the Famatinian Orogeny. Gondwana Res 7(4):1077–1087CrossRefGoogle Scholar
  57. Sato K, Kawashita K (2002) Espectrometria de massas em Geologia Isotopica. Revista do Instituto de Geociencias-USP. Geol. USP Serie Científica, Sao Paulo 2:57–77Google Scholar
  58. Sato K, Siga Jr O, Silva JA, McReath I, Liu D, Iizuka T, Rino S, Hirata T, Sproesser WM, Basei MAS (2009) In situ isotopic analyses of U and Pb in Zircon by remotely operated SHRIMP II, and Hf by LA-ICP-MS: an example of dating and genetic evolution of Zircon by 176Hf/177Hf from the Ita Quarry in the Atuba Complex, SE Brazil. Geol USP, Série Cientifica São Paulo 9:61–69Google Scholar
  59. Stappenbeck R (1913) Apuntes hidrogeológicos sobre el sudeste de la Provincia de Mendoza. Bol. 6 (Serie B). Dirección General de Minas, Buenos AiresGoogle Scholar
  60. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution via two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  61. Steiger RH, Jager E (1977) Subcommission on geochronology: convention on the use of decay constants in geochronology and cosmochronology. Contrib Geol Time Scale, AAPG Stud Geol 6:67–71Google Scholar
  62. Tanimizu M, Ishikawa T (2006) Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples. Geochem J 40:121–133CrossRefGoogle Scholar
  63. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 pGoogle Scholar
  64. Thomas WA, Tucker RD, Astini RA, Denison RE (2012) Ages of pre-rift basement and synrift rocks along the conjugate rift and transform margins of the Argentine Precordillera and Laurentia. Geosphere 8(6):1366–1383CrossRefGoogle Scholar
  65. Varela R, Basei MAS, González PD, Sato AM, Naipauer M, Campos Neto M, Cingolani CA, Meira VT (2011) Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina. Int J Earth Sci 100:243–272CrossRefGoogle Scholar
  66. Vujovich GI, Van Staal CR, Davis W (2004) Age constraints on the tectonic evolution and provenance of the Pie de Palo complex, Cuyania composite terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan, Argentina. Gondwana Res 7(4):1041–1056CrossRefGoogle Scholar
  67. Wichmann R (1928) Reconocimiento geológico de la región de El Nihuil, especialmente relacionado con el proyectado dique de embalse del Río Atuel. Dirección Nacional de Minería (unpublished report). Buenos AiresGoogle Scholar
  68. Williamson JH (1968) Least-squares fitting of a straight line. Can J Phys 46:1845–1847CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centro de Investigaciones Geológicas-CONICETUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Centro de Pesquisas Geocronológicas (CPGeo)Universidade de São Paulo, Instituto de GeocienciasSão PauloBrazil
  3. 3.Programa de Pós-Graduação em GeologiaUniversidade do Vale do Rio dos Sinos (UNISINOS)São LeopoldoBrazil
  4. 4.CURE-UDELAR Ruta 8 Km 282Treinta y TresUruguay
  5. 5.División Geología del Museo de La PlataPaseo del Bosque S/NLa PlataArgentina
  6. 6.Laboratorio de Geologia IsotópicaUniversidade Federal do Río Grande do SulPorto AlegreBrazil

Personalised recommendations