Coupling of Spontaneous Emitters with Bloch Surface Waves

  • Angelo AngeliniEmail author
Part of the PoliTO Springer Series book series (PTSS)


Since the pioneer work of Purcell [1], it has been clarified that the emitting properties of a light source can be strongly modified by the photonic environment surrounding it.


Photonic Crystal Ohmic Loss Resonant Excitation Photonic Band Structure Output Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. M. Purcell, Phys. Rev. 69, 681, (1946).Google Scholar
  2. 2.
    R. S. Meltzer, S. P. Feofilov, B. Tissue and H. B. Yuan, Dependence of fluorescence lifetimes of \(Y_2O_3 : Eu_3^+\) nanoparticles on the surrounding medium, Phys. Rev. B 60, R14012(R), (1999).Google Scholar
  3. 3.
    M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk and W. L. Vos, Fluorescence lifetimes and linewidths of dye in photonic crystals Phys. Rev. A 59, 4727, (1999).Google Scholar
  4. 4.
    N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith and B. T. Cunningham, Enhanced fluorescence emission from quantum dots on a photonic crystal surface, Nat. Nanotech, 2, 515–520, (2007).Google Scholar
  5. 5.
    P. Lohdal, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh and W. L. Vos, Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals., Nature 430, 654–657, (2004).Google Scholar
  6. 6.
    I. D. Block, L. L. Chan, B. T. Cunningham, Photonic crystal optical biosensor incorporating structured low-index porous dielectric, Sens. and Act. B 120, 187–193, (2006).Google Scholar
  7. 7.
    W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi and T. Hsu, Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities, Phys. Rev. Lett. 96, 117401, (2006).Google Scholar
  8. 8.
    J. R. Lakowicz, Radiative decay engineering 3. Surface plasmon-coupled directional emission, An. Biochem. 324 (2), 153–169, (2004).Google Scholar
  9. 9.
    R. Badugu, K. Nowazcyk, E. Descrovi, J. R. Lakowicz, Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals., An. Biochem. 442 (1), 83–96, (2013).Google Scholar
  10. 10.
    M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation Opt. Express 20, 6703 (2012).Google Scholar
  11. 11.
    Taflove A. and Hagness S. C. Computational Electrodynamic: The Finite Difference Time Domain Method 3rd edn (Boston MA: Artech House) p. 329, (2005).Google Scholar
  12. 12.
    C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A.A. Bernussi, Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation, Opt. Expr. 20 (8), 8658–8666, (2012).Google Scholar
  13. 13.
    S.P. Frisbie, C.J. Regan, A. Krishnan, C. Chesnutt, J. Ajimo, A.A. Bernussi and L. Grave de Peralta, Characterization of polarization states of surface plasmon polariton modes by Fourier-plane leakage microscopy, Opt. Comm. 283 (24), 5255–5260, (2010).Google Scholar
  14. 14.
    R. Esteban, T. V. Teperik, and J. J. Greffet, Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances, Phys. Rev. Lett. 104, 026802, (2010).Google Scholar
  15. 15.
    Y. C. Jun, K. C.Y. Huang and M. L. BrongersmaPlasmonic beaming and active control over fluorescent emission, Nat. Comm. 2, 283, (2011).Google Scholar
  16. 16.
    H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi and W. Xu, Active Plasmonic Nanoantennas for Controlling Fluorescence Beams, J. Phys. Chem. C 117, 19154–19159, (2013).Google Scholar
  17. 17.
    H. Raether, Surface Plasmons, Springer-Verlag, Berlin (1988).Google Scholar
  18. 18.
    E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti and F. Giorgis, Fluorescence imaging assisted by surface modes on dielectric multilayers, Eur. Phys. Journ., 68, 1–4 (2014).Google Scholar
  19. 19.
    A. Lamberti, A. Angelini, S. Ricciardi and F. Frascella, A flow-through holed PDMS membrane as a reusable microarray spotter for biomedical assays, Lab on Chip 15, 67–71, (2015).Google Scholar
  20. 20.
    F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiado’, C. Pederzolli, N. De Leo, P. Rivolo and E. Descrovi, Enhanced fluorescence detection of miRNA-16 on a photonic crystal, Analyst 140, 5459, (2015).Google Scholar
  21. 21.
    B. T. Cunningham and R. C. Zangar, Photonic crystal enhanced fluorescence for early breast cancer biomarker detection J. Biophotonics 5, 617 (2012).Google Scholar
  22. 22.
    S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi and E. Descrovi, Optofluidic chip for surface wave-based fluorescence sensing, Sens. and Act. B 215, 225–230, (2015).Google Scholar
  23. 23.
    A. Angelini, E. Enrico, N. De Leo, P. Munzert, L. Boarino, F. Michelotti, F. Giorgis and E. Descrovi, Fluorescence diraction assisted by Bloch surface waves on a one-dimensional photonic crystal, New J. Phys. 15, 073002, (2013).Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DISATPolitecnico di TorinoTurinItaly

Personalised recommendations