Advertisement

Bloch Surface Waves on A One Dimensional Photonic Crystal

  • Angelo AngeliniEmail author
Chapter
Part of the PoliTO Springer Series book series (PTSS)

Abstract

The first observations of Lord Rayleigh about the reflective properties of certain crystals of chlorate of potash in 1888 [1], led him to hypothesize that “on the whole, the character of the reflected light appears to me to harmonize generally with the periodical theory”. In that paper, he commented on the peculiar internal color observed in the crystals, arguing that the phenomenon could be attributed to an internal periodic structure acting as a grating. Coherent superposition causing constructive interference along certain directions for certain wavelengths was responsible for the observed coloration.

Keywords

Effective Index Bottom Side Transverse Electric Full Width Half Maximum Transfer Matrix Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Rayleigh, On the remarkable phenomenon of crystalline reflexion described by prof. Stokes, Phil. Mag. S. 5, 26, (1888).Google Scholar
  2. 2.
    P. Vukusic and R. Sambles, Photonic structures in biology, Nature 424, 852–855, (2003).Google Scholar
  3. 3.
    A. R. Parker and H. E. Townley, Biomimetics of photonic nanostructures. Nat. Nanotech. 2, 347–353, (2007).Google Scholar
  4. 4.
    J. D. Joannopoulos, S. G. Jhonson, J. N. Winn, R. D. Meade, Photonic Crystals. Molding the flow of light., \(2^{nd}\) ed., Princeton Press, Princeton, NJ, (2008).Google Scholar
  5. 5.
    T. Baba, Slow light in photonic crystals, Nature Photonics 2, 465–473, (2008).Google Scholar
  6. 6.
    T. F. Krauss, Slow light in photonic crystal waveguides, J. Phys. D: Appl. Phys. 40, 2666–2670, (2007).Google Scholar
  7. 7.
    O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science 284 (5421), 1819–1921, (1999).Google Scholar
  8. 8.
    A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich and L. A. Kolodziejski, Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode, Appl. Phys. Lett. 78, 563 (2001).Google Scholar
  9. 9.
    P. Russell, Photonic Crystal Fibers, Science, 299 (5605), 358–362, (2003).Google Scholar
  10. 10.
    L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling and B. A. Alamariu, Efficiency enhancement in Si solar cells by textured photonic crystal back reflector, Appl. Phys. Lett. 89, 111111, (2006).Google Scholar
  11. 11.
    E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Donor and acceptor modes in photonic band structure, Phys. Rev. Lett. 67, 3380, (1991).Google Scholar
  12. 12.
    P. Lalanne C. Sauvan and J. P. Hugonin, Photon confinement in photonic crystal nanocavities, Laser and Photonics Reviews 2 (6), 514–526, (2008).Google Scholar
  13. 13.
    J. D. Joannopoulos, P. R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light, Nature 386, 143–149, (1997).Google Scholar
  14. 14.
    S. Noda, M. Fujita, T. Asano, Spontaneous-emission control by photonic crystals and nanocavities, Nature Photonics 1, 449–458, (2007).Google Scholar
  15. 15.
    D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuckovic, Controlling the Spontaneous Emission Rate of Single Quantum Dotsin a Two-Dimensional Photonic Crystal, PRL 95, 013904, (2005).Google Scholar
  16. 16.
    P. Lohdal, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh and W. L. Vos, Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals., Nature 430, 654–657, (2004).Google Scholar
  17. 17.
    E. M. Purcell, Phys. Rev. 69, 681, (1946).Google Scholar
  18. 18.
    L. Novotny and N. F. Van Hulst, Antennas for light, Nat. Photon. 5, 83–90, (2011).Google Scholar
  19. 19.
    M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, Inhibited Spontaneous Emission of Quantum Dots Observed in a 3D Photonic Band Gap, Phys. Rev. Lett. 107, 193903, (2011).Google Scholar
  20. 20.
    F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis and F. Geobaldo, Fast optical vapour sensing by Bloch surface waves on porous silicon membranes, Phys. Chem. Chem. Phys 12, 502–506, (2010).Google Scholar
  21. 21.
    F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi Probing losses of dielectric multilayers by means of Bloch surface waves, Opt. Lett. 38, 616–618, (2013).Google Scholar
  22. 22.
    H. Raether, Surface Plasmons, Springer-Verlag, Berlin (1988).Google Scholar
  23. 23.
    R. D. Maede, K. D. Brommer, A. M. Rappe and J. D. Joannopoulos, Electromagnetic Bloch Waves at the surface of a photonic crystal Phys. Rev. B, 44, 109601, (1995).Google Scholar
  24. 24.
    E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin and F. Giorgis, Guided Bloch surface waves on ultrathin polymeric ridges, Nano Lett. 10, 2087–2091 (2012).Google Scholar
  25. 25.
    N. Ganesh, I. D. Block and B. T. Cunningham, Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio, Appl. Phys. Lett. 89, 023901, (2006).Google Scholar
  26. 26.
    R. Badugu, J. Mao, S. Blair, D. Zhang, E. Descrovi, A. Angelini, Y. Huo and J. R Lakowicz, Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths, J. Phys. Chem. C, 120 (50), 28727–34, (2016). Google Scholar
  27. 27.
    L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco and H. P. Herzig, Manipulating Bloch surface waves in 2D: a platform concept-based flat lens, Light: Sci. Appl. 3, e124, (2013).Google Scholar
  28. 28.
    M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis and E. Descrovi Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal, Appl. Phys. Lett 99, 043302 (2011).Google Scholar
  29. 29.
    B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye and D. W. Pohl, Local excitation, scattering, and interference of surface plasmons, Phys. Rev. Lett. 77 (9), 1889, 1996.Google Scholar
  30. 30.
    T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin and H. P. Herzig, Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation, JOSA B, 27 (8), 1617–1625, (2010).Google Scholar
  31. 31.
    X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, H. P. Herzig Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides. JEOS - RP, Europe, v. 9, oct. 2014. ISSN 1990-2573.Google Scholar
  32. 32.
    A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, J. R. Krenn, Leakage radiation microscopy of surface plasmon polaritons, Mat. Sci.Eng. B 149, 220–229, (2008).Google Scholar
  33. 33.
    A. Angelini, E. Enrico, N. De Leo, P. Munzert, L. Boarino, F. Michelotti, F. Giorgis and E. Descrovi, Fluorescence diffraction assisted by Bloch surface waves on a one-dimensional photonic crystal, New J. Phys. 15, 073002, (2013).Google Scholar
  34. 34.
    A. Angelini, Resonant evanescent complex field on dielectric multilayers, Opt. Lett. 40(24), 5746–5749, (2015).Google Scholar
  35. 35.
    W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface Plasmon subwavelength optics, Nature 424, 824–830, (2003).Google Scholar
  36. 36.
    J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, Beaming Visible Light with a Plasmonic Aperture Antenna, ACS Phot. 1, 365–370, (2014).Google Scholar
  37. 37.
    T. Zentgraf, Y. Liu, M.H. Mikkelsen, J. Valentine and X. Zhang, Plasmonic Luneburg and Eaton lenses, Nat. Nanotech. 6, 151–155, (2011).Google Scholar
  38. 38.
    C. Zhao and J. Zhang, Flexible wavefront manipulation of surface plasmon polaritons without mechanical motion components, Appl. Phys. Lett. 98, 211108, (2011).Google Scholar
  39. 39.
    C. Zhao, J. Wang, X. Wu and J. Zhang, Focusing surface plasmons to multiple focal spots with a launching diffraction grating, Appl. Phys. Lett. 94, 111105 (2009).Google Scholar
  40. 40.
    C. Zhao and J. Zhang, Binary plasmonics: launching surface plasmon polaritons to a desired pattern, Opt. Lett. 34, 2417, (2009).Google Scholar
  41. 41.
    C. Zhao, Y. Liu, Y. Zhao, N. Fang and T.J. Huang, A reconfigurable plasmofluidic lens, Nat. Comm. 4, 2305, (2013).Google Scholar
  42. 42.
    G. M. Lerman and U. Levy, Pin Cushion Plasmonic Device for Polarization Beam Splitting, Focusing, and Beam Position Estimation, Nano Lett. 13, 1100–1105, (2013).Google Scholar
  43. 43.
    E. Descrovi, F. Giorgis, L. Dominici and F. Michelotti, Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal, Opt. Lett. 33 (3), 243–245, (2008).Google Scholar
  44. 44.
    T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa and F. Michelotti, Two-dimensional optics on silicon nitride multilayer: Refraction of Bloch surface waves, Appl. Phys. Lett. 96, 151101, (2010).Google Scholar
  45. 45.
    A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis and E. Descrovi, Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources ACS Phot. 1, 612–617 (2015).Google Scholar
  46. 46.
    A. Angelini, E. Barakat, P. Munzert, L. Boarino, N. De Leo, E. Enrico, F. Giorgis, H. P. Herzig, C. F. Pirri, E. Descrovi, Focusing and Extraction of Light mediated by Bloch Surface Waves, Sci. Rep. 4, 5428, (2014).Google Scholar
  47. 47.
    M. Liscidini, J. E. Sipe, Analysis of Bloch-surface-wave assisted diffraction-based biosensors, JOSAB 26 (2), 279–289, (2009).Google Scholar
  48. 48.
    T. Holmgaard and S. I. Bozhevolnyi, Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides, Phys. Rev. B 75, 245405, (2007).Google Scholar
  49. 49.
    E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, F. Michelotti, Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications, Appl. Phys. Lett. 91, 241109 (2007).Google Scholar
  50. 50.
    S. Santi, V. Musi, E. Descrovi, V. Paeder, J. Di Francesco, L. Hvozdara, P. van der Wal, H. A. Lashuel, A. Pastore, R. Neier, H. P. Herzig, Real-time Amyloid Aggregation Monitoring with a Photonic Crystal-based Approach, Chem. Phys. Chem. 14, 83–3476, (2013).Google Scholar
  51. 51.
    R. Ulrich, Theory of the Prism-Film Coupler by Plane-Wave Analysis, J. Opt. Soc. Am. 60, 1337 (1970).Google Scholar
  52. 52.
    A. Angelini, A. Lamberti, S. Ricciardi, F. Frascella, P. Munzert, N. De Leo and E. Descrovi, In-plane 2D focusing of surface waves by ultrathin refractive structures, Opt. Lett. 39 (22), 6391–6394, (2014).Google Scholar
  53. 53.
    M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation Opt. Express 20, 6703 (2012).Google Scholar
  54. 54.
    E. Descrovi, E. Barakat, A. Angelini, P. Munzert, N. De Leo, L. Boarino, F. Giorgis and H. P. Herzig, Leakage radiation interference microscopy, Opt. Lett. 38 (17), 3374–3376, (2013).Google Scholar
  55. 55.
    J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, Digital wave-front measuring interferometry: some systematic error sources Appl. Opt. 22, 3421 (1983).Google Scholar
  56. 56.
    P. Hariharan, B. F. Oreb, and T. Eiju,Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm Appl. Opt. 26, 2504 (1987).Google Scholar
  57. 57.
    A. Berrier, M. Swillo, N. Le Thomas, R. Houdre’, and S. Anand, Bloch mode excitation in two-dimensional photonic crystals imaged by Fourier optics Phys. Rev. B 79, 165116 (2009).Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DISATPolitecnico di TorinoTurinItaly

Personalised recommendations