Skip to main content

Forecasting Monthly Rainfall in the Bowen Basin of Queensland, Australia, Using Neural Networks with Niño Indices

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9992)

Abstract

For three decades there has been a significant global effort to improve El Niño-Southern Oscillation (ENSO) forecasts with the focus on using fully physical ocean-atmospheric coupled general circulation models (GCMs). Despite increasing sophistication of these models and the computational power of the computers that drive them, their predictive skill remains comparable with relatively simple statistical models. In this study, an artificial neural network (ANN) is used to forecast four indices that describe ENSO, namely Niño 1 + 2, 3, 3.4 and 4. The skill of the forecast for Niño 3.4 is compared with forecasts from GCMs and found to be more accurate particularly for forecasts with longer-lead times, and with no evidence of a Spring Predictability Barrier. The forecast values for Niño 1 + 2, 3, 3.4 and 4 were subsequently used as input to an ANN to forecast rainfall for Nebo, a locality in the Bowen Basin, a major coal-mining region of Queensland.

Keywords

  • ENSO
  • Niño
  • Sea surface temperature
  • Artificial neural network
  • General circulation model
  • Rainfall
  • Spring predictability barrier

This is a preview of subscription content, access via your institution.

References

  1. Queensland Government Flood Commission of Inquiry, Chap. 13 Mining (2012). http://www.floodcommission.qld.gov.au/publications/final-report

  2. Sharma, V., van de Graaff, S., Loechel, B., Franks, D.: Extractive resource development in a changing climate: learning the lessons from extreme weather events in Queensland, Australia. In: National Climate Change Adaptation Research Facility, Gold Coast, p. 110 (2013)

    Google Scholar 

  3. Risbey, J.S., Pook, M.J., Mcintosh, P.C.: On the remote drivers of rain variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009)

    CrossRef  Google Scholar 

  4. Cai, W., van Rensch, P.: The 2011 southeast Queensland extreme summer Rain: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys. Res. Lett. 39, L08702 (2012)

    CrossRef  Google Scholar 

  5. Anwar, M.R., Rodriguez, D., Liu, D.L., et al.: Quality and potential utility of ENSO-based forecasts of spring rainfall and wheat yield in south-eastern Australia. Aust. J. Agri. Res. 59, 112–126 (2008)

    CrossRef  Google Scholar 

  6. Clarke, A.J., Van Gorder, S., Everingham, Y.: Forecasting long-lead rainfall probability with application to Australia’s Northeastern coast. J. Appl. Meteorol. Climatol. 49, 1443–1453 (2010)

    CrossRef  Google Scholar 

  7. Hu, W., Clements, A., Williams, G., et al.: Dengue fever and El Nino/Southern Oscillation in Queensland, Australia: a time series predictive model. Occup. Environ. Med. 67, 307–311 (2010)

    CrossRef  Google Scholar 

  8. Brigode, P., Mićović, Z., Bernardara, P., et al.: Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification. Hydrol. Earth Syst. Sci. 17, 1455–1473 (2013)

    CrossRef  Google Scholar 

  9. McCabe, G.J., Ault, T.R., Cook, B.I., et al.: Influences of the El Nino Southern Oscillation and the Pacific Decadal Oscillation on the timing of the North American spring. Int. J. Climatol. 32, 2301–2310 (2012)

    CrossRef  Google Scholar 

  10. Bulic, I.H., Kucharski, F.: Delayed ENSO impact on spring precipitation over North Atlantic/European region. Clim Dynam. 38, 2593–2612 (2012)

    CrossRef  Google Scholar 

  11. Xu, K., Zhu, C., He, J.: Two types of El Nino-related Southern Oscillation and their different impacts on global land precipitation. Adv. Atmos. Sci. 30(6), 1743–1757 (2013)

    CrossRef  Google Scholar 

  12. Diatta, S., Fink, A.H.: Statistical relationship between remote climate indices and West African monsoon variability. Int. J. Climatol. 34(2), 3348–3367 (2014)

    CrossRef  Google Scholar 

  13. Latif, M.T., Stockdale, J., Wolff, J., et al.: Climatology and variability in the ECHO coupled GCM. Tellus 46A, 351–366 (1994)

    CrossRef  Google Scholar 

  14. Latif, M., Barnett, T.P., Cane, M.A., et al.: A review of ENSO prediction studies. Clim. Dynam. 9, 167–179 (1994)

    CrossRef  Google Scholar 

  15. Tangang, F.T., Hsieh, W.W., Tang, B.: Forecasting the equatorial Pacific sea surface temperatures by neural network models. Clim. Dynam. 13, 135–147 (1997)

    CrossRef  Google Scholar 

  16. Halide, H., Ridd, P.: Complicated ENSO models do not significantly outperform very simple ENSO models. Int. J. Climatol. 28, 219–233 (2008)

    CrossRef  Google Scholar 

  17. Barnston, A.G., Tippett, M.K., L’Heureux, M.L., et al.: Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? B. Am. Meteorol. Soc. 93(5), 631–651 (2012)

    CrossRef  Google Scholar 

  18. Chen, D., Cane, M.A.: El Nino prediction and predictability. J. Comput. Phys. 227, 3625–3640 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Zheng, F., Zhu, J., Wang, H., et al.: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci. 26(2), 359–372 (2009)

    CrossRef  Google Scholar 

  20. Peng, Y., Duan, W., Xiang, J.: Can the uncertainties of Madden–Jullian Oscillation cause a significant “Spring Predictability Barrier” for ENSO events? Acta Meteorol. Sin. 26(5), 566–578 (2012)

    CrossRef  Google Scholar 

  21. Duan, W., Zhang, R.: Is model parameter error related to a significant spring predictability barrier for El Nino events? results from a theoretical model. Adv. Atmos. Sci. 27(5), 1003–1013 (2010)

    CrossRef  Google Scholar 

  22. Kramer, W., Dijkstra, H.A.: Optimal localized observations for advancing beyond the ENSO predictability barrier. Nonlin. Processes Geophys. 20, 221–230 (2013)

    CrossRef  Google Scholar 

  23. Yan, L., Yu, Y.: The spring prediction barrier in ENSO hindcast experiments using the FGOALS-g model. Chinese J. Oceanology Limnol. 30(6), 1093–1104 (2012)

    CrossRef  Google Scholar 

  24. Duan, W., Wei, C.: The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: results from a fully coupled model. Int. J. Climatol. 33, 1280–1292 (2013)

    CrossRef  Google Scholar 

  25. Abbot, J., Marohasy, J.: Input selection and optimization for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res. 128(3), 166–178 (2014)

    CrossRef  Google Scholar 

  26. Abbot, J., Marohasy, J.: Application of artificial neural networks to rainfall forecasting in Queensland. Australia. Adv. Atmos. Sci. 29(4), 717–730 (2012)

    CrossRef  Google Scholar 

  27. Abbot, J., Marohasy, J.: The application of artificial intelligence for monthly rainfall forecasting in the Brisbane Catchment, Queensland, Australia. WIT Trans. Ecol. Environ. 172, 1743–3541 (2013)

    Google Scholar 

  28. Abbot, J., Marohasy, J.: The potential benefits of using artificial intelligence for monthly rainfall forecasting for the Bowen Basin, Queensland, Australia. WIT Trans. Ecol. Environ. 171, 1743–3541 (2013)

    Google Scholar 

  29. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology. I preliminary concepts. J. Hydrol. Eng. 5, 115–123 (2000)

    Google Scholar 

  30. Verdon, D.C., Franks, S.W.: Long-term behavior of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett. 33(6), L06712 (2006)

    CrossRef  Google Scholar 

  31. Power, S., Casey, T., Folland, C., et al.: Interdecadal modulation of the impact of ENSO on Australia. Clim. Dynam. 15, 319–324 (1999)

    CrossRef  Google Scholar 

  32. Izumo, T., Vialard, J., Lengaigne, M., et al.: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. 3, 168–172 (2010)

    CrossRef  Google Scholar 

  33. Singh, P., Borah, B.: Indian summer monsoon rainfall prediction using artificial neural network. Stoch. Environ. Res. Risk. Assess. 27, 1585–1599 (2013)

    CrossRef  Google Scholar 

  34. Acharya, N., Chattopadhyay, S., Kulkarni, M.A., et al.: A neurocomputing approach to predict monsoon rainfall in monthly scale using SST anomaly as a predictor. Acta Geophys. 60(1), 260–279 (2012)

    CrossRef  Google Scholar 

  35. Saigal, S., Mehrotra, D.: Performance comparison of time series data using predictive data mining techniques. Adv. Inf. Mining. 4(1), 57–66 (2012)

    Google Scholar 

  36. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005)

    CrossRef  Google Scholar 

  37. Zhu, J., Zhou, G.Q., Zhang, R.H., et al.: Improving ENSO prediction in a hybrid coupled model with an embedded entrainment temperature parameterisation. Int. J. Climatol. 33, 343–355 (2013)

    CrossRef  Google Scholar 

  38. Webster, P.J., Yang, S.: Monsoon and ENSO: selectively interactive systems. Quart. J. Roy. Meteor. Soc. 118, 877–926 (1992)

    CrossRef  Google Scholar 

  39. Lau, K.M., Yang, S.: The Asian monsoon and predictability of the tropical ocean-atmosphere system. Quart. J. Roy. Meteor. Soc. 122, 945–957 (1996)

    Google Scholar 

  40. McPhaden, M.J.: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett. 30, 1480 (2003)

    CrossRef  Google Scholar 

  41. Zheng, F., Zhu, J.: Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Global Planet. Change 72, 108–117 (2010)

    CrossRef  Google Scholar 

  42. Wu, A., Hsieh, W.W., Tang, B.: Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Netw. 19, 145–154 (2006)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was funded by the B. Macfie Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Abbot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Abbot, J., Marohasy, J. (2016). Forecasting Monthly Rainfall in the Bowen Basin of Queensland, Australia, Using Neural Networks with Niño Indices. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)