Abstract
For three decades there has been a significant global effort to improve El Niño-Southern Oscillation (ENSO) forecasts with the focus on using fully physical ocean-atmospheric coupled general circulation models (GCMs). Despite increasing sophistication of these models and the computational power of the computers that drive them, their predictive skill remains comparable with relatively simple statistical models. In this study, an artificial neural network (ANN) is used to forecast four indices that describe ENSO, namely Niño 1 + 2, 3, 3.4 and 4. The skill of the forecast for Niño 3.4 is compared with forecasts from GCMs and found to be more accurate particularly for forecasts with longer-lead times, and with no evidence of a Spring Predictability Barrier. The forecast values for Niño 1 + 2, 3, 3.4 and 4 were subsequently used as input to an ANN to forecast rainfall for Nebo, a locality in the Bowen Basin, a major coal-mining region of Queensland.
Keywords
- ENSO
- Niño
- Sea surface temperature
- Artificial neural network
- General circulation model
- Rainfall
- Spring predictability barrier
This is a preview of subscription content, access via your institution.
References
Queensland Government Flood Commission of Inquiry, Chap. 13 Mining (2012). http://www.floodcommission.qld.gov.au/publications/final-report
Sharma, V., van de Graaff, S., Loechel, B., Franks, D.: Extractive resource development in a changing climate: learning the lessons from extreme weather events in Queensland, Australia. In: National Climate Change Adaptation Research Facility, Gold Coast, p. 110 (2013)
Risbey, J.S., Pook, M.J., Mcintosh, P.C.: On the remote drivers of rain variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009)
Cai, W., van Rensch, P.: The 2011 southeast Queensland extreme summer Rain: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys. Res. Lett. 39, L08702 (2012)
Anwar, M.R., Rodriguez, D., Liu, D.L., et al.: Quality and potential utility of ENSO-based forecasts of spring rainfall and wheat yield in south-eastern Australia. Aust. J. Agri. Res. 59, 112–126 (2008)
Clarke, A.J., Van Gorder, S., Everingham, Y.: Forecasting long-lead rainfall probability with application to Australia’s Northeastern coast. J. Appl. Meteorol. Climatol. 49, 1443–1453 (2010)
Hu, W., Clements, A., Williams, G., et al.: Dengue fever and El Nino/Southern Oscillation in Queensland, Australia: a time series predictive model. Occup. Environ. Med. 67, 307–311 (2010)
Brigode, P., Mićović, Z., Bernardara, P., et al.: Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification. Hydrol. Earth Syst. Sci. 17, 1455–1473 (2013)
McCabe, G.J., Ault, T.R., Cook, B.I., et al.: Influences of the El Nino Southern Oscillation and the Pacific Decadal Oscillation on the timing of the North American spring. Int. J. Climatol. 32, 2301–2310 (2012)
Bulic, I.H., Kucharski, F.: Delayed ENSO impact on spring precipitation over North Atlantic/European region. Clim Dynam. 38, 2593–2612 (2012)
Xu, K., Zhu, C., He, J.: Two types of El Nino-related Southern Oscillation and their different impacts on global land precipitation. Adv. Atmos. Sci. 30(6), 1743–1757 (2013)
Diatta, S., Fink, A.H.: Statistical relationship between remote climate indices and West African monsoon variability. Int. J. Climatol. 34(2), 3348–3367 (2014)
Latif, M.T., Stockdale, J., Wolff, J., et al.: Climatology and variability in the ECHO coupled GCM. Tellus 46A, 351–366 (1994)
Latif, M., Barnett, T.P., Cane, M.A., et al.: A review of ENSO prediction studies. Clim. Dynam. 9, 167–179 (1994)
Tangang, F.T., Hsieh, W.W., Tang, B.: Forecasting the equatorial Pacific sea surface temperatures by neural network models. Clim. Dynam. 13, 135–147 (1997)
Halide, H., Ridd, P.: Complicated ENSO models do not significantly outperform very simple ENSO models. Int. J. Climatol. 28, 219–233 (2008)
Barnston, A.G., Tippett, M.K., L’Heureux, M.L., et al.: Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? B. Am. Meteorol. Soc. 93(5), 631–651 (2012)
Chen, D., Cane, M.A.: El Nino prediction and predictability. J. Comput. Phys. 227, 3625–3640 (2008)
Zheng, F., Zhu, J., Wang, H., et al.: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci. 26(2), 359–372 (2009)
Peng, Y., Duan, W., Xiang, J.: Can the uncertainties of Madden–Jullian Oscillation cause a significant “Spring Predictability Barrier” for ENSO events? Acta Meteorol. Sin. 26(5), 566–578 (2012)
Duan, W., Zhang, R.: Is model parameter error related to a significant spring predictability barrier for El Nino events? results from a theoretical model. Adv. Atmos. Sci. 27(5), 1003–1013 (2010)
Kramer, W., Dijkstra, H.A.: Optimal localized observations for advancing beyond the ENSO predictability barrier. Nonlin. Processes Geophys. 20, 221–230 (2013)
Yan, L., Yu, Y.: The spring prediction barrier in ENSO hindcast experiments using the FGOALS-g model. Chinese J. Oceanology Limnol. 30(6), 1093–1104 (2012)
Duan, W., Wei, C.: The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: results from a fully coupled model. Int. J. Climatol. 33, 1280–1292 (2013)
Abbot, J., Marohasy, J.: Input selection and optimization for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res. 128(3), 166–178 (2014)
Abbot, J., Marohasy, J.: Application of artificial neural networks to rainfall forecasting in Queensland. Australia. Adv. Atmos. Sci. 29(4), 717–730 (2012)
Abbot, J., Marohasy, J.: The application of artificial intelligence for monthly rainfall forecasting in the Brisbane Catchment, Queensland, Australia. WIT Trans. Ecol. Environ. 172, 1743–3541 (2013)
Abbot, J., Marohasy, J.: The potential benefits of using artificial intelligence for monthly rainfall forecasting for the Bowen Basin, Queensland, Australia. WIT Trans. Ecol. Environ. 171, 1743–3541 (2013)
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology. I preliminary concepts. J. Hydrol. Eng. 5, 115–123 (2000)
Verdon, D.C., Franks, S.W.: Long-term behavior of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett. 33(6), L06712 (2006)
Power, S., Casey, T., Folland, C., et al.: Interdecadal modulation of the impact of ENSO on Australia. Clim. Dynam. 15, 319–324 (1999)
Izumo, T., Vialard, J., Lengaigne, M., et al.: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. 3, 168–172 (2010)
Singh, P., Borah, B.: Indian summer monsoon rainfall prediction using artificial neural network. Stoch. Environ. Res. Risk. Assess. 27, 1585–1599 (2013)
Acharya, N., Chattopadhyay, S., Kulkarni, M.A., et al.: A neurocomputing approach to predict monsoon rainfall in monthly scale using SST anomaly as a predictor. Acta Geophys. 60(1), 260–279 (2012)
Saigal, S., Mehrotra, D.: Performance comparison of time series data using predictive data mining techniques. Adv. Inf. Mining. 4(1), 57–66 (2012)
Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005)
Zhu, J., Zhou, G.Q., Zhang, R.H., et al.: Improving ENSO prediction in a hybrid coupled model with an embedded entrainment temperature parameterisation. Int. J. Climatol. 33, 343–355 (2013)
Webster, P.J., Yang, S.: Monsoon and ENSO: selectively interactive systems. Quart. J. Roy. Meteor. Soc. 118, 877–926 (1992)
Lau, K.M., Yang, S.: The Asian monsoon and predictability of the tropical ocean-atmosphere system. Quart. J. Roy. Meteor. Soc. 122, 945–957 (1996)
McPhaden, M.J.: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett. 30, 1480 (2003)
Zheng, F., Zhu, J.: Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Global Planet. Change 72, 108–117 (2010)
Wu, A., Hsieh, W.W., Tang, B.: Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Netw. 19, 145–154 (2006)
Acknowledgements
This work was funded by the B. Macfie Family Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Abbot, J., Marohasy, J. (2016). Forecasting Monthly Rainfall in the Bowen Basin of Queensland, Australia, Using Neural Networks with Niño Indices. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-50127-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50126-0
Online ISBN: 978-3-319-50127-7
eBook Packages: Computer ScienceComputer Science (R0)