Skip to main content

Visual Odometry in Dynamic Environments with Geometric Multi-layer Optimisation

  • Conference paper
  • First Online:
AI 2016: Advances in Artificial Intelligence (AI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9992))

Included in the following conference series:

  • 3125 Accesses

Abstract

This paper presents a novel approach for optimising visual odometry results in a dynamic outdoor environment. Egomotion estimation is still considered to be one of the more difficult tasks in computer vision because of its continued computation pipeline: every phase of visual odometry can be a source of noise or errors, and influence future results. Also, tracking features in a dynamic environment is very challenging. Since feature tracking can only match two features in integer coordinates, there will be a data loss at sub-pixel level. In this paper we introduce a weighting scheme that measures the geometric relations between different layers: We divide tracked features into three groups based on geometric constrains; each group is recognised as being a “layer”. Each layer has a weight which depends on the distribution of the grouped features on the 2D image and the actual position in 3D scene coordinates. This geometric multi-layer approach can effectively remove all the dynamic features in the scene, and provide more reliable feature tracking results. Moreover, we propose a 3-state Kalman filter optimisation approach. Our method follows the traditional process of visual odometry algorithms by focusing on motion estimation between pairs of two consecutive frames. Experiments and evaluations are carried out for trajectory estimation. We use the provided ground truth of the KITTI data-sets to analyse mean rotation and translation errors over distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T., Franke, U., Appenrodt, N., Keller, C.G., Kaus, E., Herrtwich, R.G., Rabe, C., Pfeiffer, D., Lindner, F., Stein, F., Erbs, F., Enzweiler, M., Knoppel, C., Hipp, J., Haueis, M., Trepte, M., Brenk, C., Tamke, A., Ghanaat, M., Braun, M., Joos, A., Fritz, H., Mock, H., Hein, M., Zeeb, E.: Making Bertha drive - an autonomous journey on a historic route. IEEE Spectr. 51(8), 44–49 (2015)

    Google Scholar 

  2. Klette, R.: Concise Computer Vision. Springer, London (2014)

    Book  MATH  Google Scholar 

  3. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of CVPR, pp. 652–659 (2004)

    Google Scholar 

  4. Scaramuzza, D., Fraundorfer, F.: Visual odometry tutorial. Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  5. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars Exploration Rovers. J. Field Robot. 24, 169–186 (2007)

    Article  Google Scholar 

  6. Matthies, L., Shafer, S.: Error modeling in stereo navigation. Int. J. Robot. Autom. 3, 239–248 (1987)

    Google Scholar 

  7. Matthies, L.: Dynamic stereo vision, Ph.D. dissertation, Carnegie Mellon University (1989)

    Google Scholar 

  8. Demirdjian, D., Darrell, T.: Motion estimation from disparity images. In: Proceedings of ICCV, vol. 1, pp. 213–218 (2001)

    Google Scholar 

  9. Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_42

    Chapter  Google Scholar 

  10. Kalman, R.E.: A new approach to linear filtering and prediction problem. J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  11. Schmidt, S.: Applications of state-space methods of navigation problems. J. Adv. Control Syst. 3, 293–340 (1966)

    Article  Google Scholar 

  12. Julier S.J., Uhlmann. J.K.: Unscented filtering and nonlinear estimation. In: Proceedings of IEEE, vol. 93, pp. 401–422 (2004)

    Google Scholar 

  13. Khan, W., Klette, R.: Stereo accuracy for collision avoidance for varying collision trajectories. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 1259–1264 (2013)

    Google Scholar 

  14. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haokun Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Geng, H., Chien, HJ., Nicolescu, R., Klette, R. (2016). Visual Odometry in Dynamic Environments with Geometric Multi-layer Optimisation. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics