Skip to main content

Smart Textiles and Smart Personnel Protective Equipment

  • Chapter
  • First Online:
Smart Textiles

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Wearable computing and smart textiles are the enablers for smartPPE (Personnel Protective Equipment). Was wearable computing first the idea to integrate computing power into clothing to, e.g., access information, we observe in recent years a split into two domains: wearable computers as smartphones, glasses and wristbands on one side and smart textiles on the other side. The research here described in some detail deals with a specific domain where these two developments meet: the smartPPE where the smart textile gathers sensor information and the wearable computer automatically generates context information to protect the health status of the person wearing the smart textile. This can be necessary due to perilous environments or chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reiss, A., Amft, O.: Design challenges of real wearable computers. In: Barfield, W. (ed.) Fundamentals of Wearable Computers and Augmented Reality, 2nd edn, pp. 583–618. CRC Press (2015)

    Google Scholar 

  2. Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of things. In: From Active Data Management to Event-based Systems and More, pp. 242–259. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  3. Lukowicz, P., Timm-Giel, A., Lawo, M., Herzog, O.: wearIT@ work: toward real-world industrial wearable computing. IEEE Pervasive Comput. 6(4), 8–13 (2007)

    Article  Google Scholar 

  4. Lawo, M., Boronowsky, M., Herzog, O., Knackfuss, P.: wearIT@ work-empowering by wearable computing (2007)

    Google Scholar 

  5. Lawo, M., Herzog, O., Lukowicz, P., Witt, H.: Using wearable computing solutions in real-world applications. In: CHI’08 Extended Abstracts on Human Factors in Computing Systems, pp. 3687–3692. ACM (2008)

    Google Scholar 

  6. Lawo, M., Herzog, O., Boronowsky, M., Knackfuss, P.: The open wearable computing group. IEEE Pervasive Comput. 10(2), 78–81 (2011)

    Article  Google Scholar 

  7. Baumann, H.: Order picking supported by mobile computing. Doctoral dissertation, University of Bremen (2013)

    Google Scholar 

  8. Mohamad, Y., Velasco, C.A., Pullmann, J., Lawo, M., Kirisci, P.: Virtual user concept for inclusive design of consumer products and user interfaces. In: Universal Access in Human-Computer Interaction. Users Diversity, pp. 79–87. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  9. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact. 16(2), 97–166 (2001)

    Article  Google Scholar 

  10. Bannach, D., Lukowicz, P., Amft, O.: Rapid prototyping of activity recognition applications. IEEE Pervasive Comput. 7(2), 22–31 (2008)

    Article  Google Scholar 

  11. Roggen, D., Lukowicz, P., Ferscha, A., Milln, J. D. R., Trster, G., Chavarriaga, R.: Opportunistic human activity and context recognition. Comput.-IEEE Comput. Soc. 46(EPFL-ARTICLE-182084), 36–45 (2013)

    Google Scholar 

  12. Kurz, M., Ferscha, A., Calatroni, A., Roggen, D., Trster, G.: Towards a framework for opportunistic activity and context recognition. In: 12th ACM International Conference on Ubiquitous Computing (Ubicomp: 2010), Workshop on Context awareness and information processing in opportunistic ubiquitous systems. Copenhagen, Denmark (2010)

    Google Scholar 

  13. Iben, D.I.H.: Rapid prototyping infrastructure for wearable computing applications. Doctoral dissertation, University of Bremen (2015)

    Google Scholar 

  14. Accessed 15 Dec 2015. https://github.com/wearlab-uni-bremen

  15. Lawo, M.: Ein drahtloser Eingabehandschuh fr das Wearable Computing. In: Mensch and Computer, pp. 457–459 (2006)

    Google Scholar 

  16. Kenn, H., Megen, F.V., Sugar, R.: A glove-based gesture interface for wearable computing applications. In: 2007 4th International Forum on Applied Wearable Computing (IFAWC), pp. 1–10. VDE (2007)

    Google Scholar 

  17. o.V.: “Textile elektronische Schaltungen”, Abschlussbericht IW061064 TITV Greiz (2008)

    Google Scholar 

  18. Linz, T., Kallmayer, C., Aschenbrenner, R., Reichl, H.: New interconnection technologies for the integration of electronics on textile substrates. Ambience (2005)

    Google Scholar 

  19. Linz, T., Kallmayer, C., Aschenbrenner, R., Reichl, H.: Embroidering electrical interconnects with conductive yarn for the integration of flexible electronic modules into fabric. In: Null, pp. 86–91. IEEE (2005)

    Google Scholar 

  20. TITV Das Institut fr Spezialtextilien und flexible Materialien, “TexoLED textilintegrierte und textilbasierte LED’s und OLED’s BMBF-MST: 16SV3450”. http://titv-greiz.de/index.php?id=bmbf16sv3450. Accessed 23 May 2014

  21. Scheibner, W., Rotsch, C., Gimpel, S., Mhring, U.: Textilien fr sensorische und aktuatorische Applikationen. GMM-Fachbericht-Energieautarke Sensorik (2008)

    Google Scholar 

  22. Mhring, U., Neudeck, A., Scheibner, W.: Textile micro system technology. In: Intelligent Textiles and Clothing, pp. 342–354 (2006)

    Google Scholar 

  23. Scheibner, D.W., Neudeck, D.A., Zschenderlein, D., Mhring, D.U.: Bandgewebe mit elektrischen Lichteffekten. Melliand Band-und Flechtindustrie 41(1) (2004)

    Google Scholar 

  24. Linz, T., Vieroth, R., Dils, C., Koch, M., Braun, T., Becker, K.F., ... Hong, S.M.: Embroidered interconnections and encapsulation for electronics in textiles for wearable electronics applications. In: Advances in science and technology, vol. 60, pp. 85–94 (2009)

    Google Scholar 

  25. Electronic systems incorporated into textile threads or fibres, Patent WO 2002084617 A1 (2002)

    Google Scholar 

  26. Woven electronic textile, yarn and article, Patent WO 2003094719 A1 (2003)

    Google Scholar 

  27. Textiler Stoff mit Bauelementen/Leitungen, Patent DE 10 2005 033 643 A1 (2007)

    Google Scholar 

  28. Nagaraju, G., Raju, G.S.R., Ko, Y.H., Yu, J.S.: Hierarchical NiCo layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8(2), 812–825 (2016)

    Article  Google Scholar 

  29. Randell, C., Baurley, S., Chalmers, M., Muller, H.: Textile tools for wearable computing (2004)

    Google Scholar 

  30. Elektrisola Feindraht AG. Available http://www.textile-wire.com/textilewire/metalle.html

  31. Accessed 21 Apr 2016. http://www.imbut.de/en/special-threads/

  32. Accessed 21 Apr 2016. http://www.imbut.de/smart-textiles/

  33. Rattflt, L., Lindn, M., Hult, P., Berglin, L., Ask, P.: Electrical characteristics of conductive yarns and textile electrodes for medical applications. Med. Biol. Eng. Comput. 45(12), 1251–1257 (2007)

    Article  Google Scholar 

  34. Interactive Wear. Accessed 21 Apr 2016. http://interactive-wear.de/cms/front_content.php?idcat=72

  35. Forster Rohner Textile Innovations. Accessed 21 Apr 2016. http://www.frti.ch/de/technologie/textile-beleuchtung.html

  36. Paradiso, R., Loriga, G., Taccini, N., Gemignani, A., Ghelarducci, B.: WEALTHY-a wearable healthcare system: new frontier on e-textile. J. Telecommun. Inf. Technol. 4, 105–113 (2005)

    Google Scholar 

  37. Coosemans, J., Hermans, B., Puers, R.: Integrating wireless ECG monitoring in textiles. Sens. Actuators A: Phys. 130, 48–53 (2006)

    Article  Google Scholar 

  38. Linz, T., Gourmelon, L., Langereis, G.: Contactless EMG sensors embroidered onto textile. In: 4th International Workshop on Wearable and Implantable Body Sensor Networks (2007)

    Google Scholar 

  39. Lofhede, J., Seoane, F., Thordstein, M.: Soft textile electrodes for EEG monitoring. In: 2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), pp. 1–4. IEEE (2010)

    Google Scholar 

  40. Lfhede, J., Seoane, F., Thordstein, M.: Textile electrodes for EEG recording a pilot study. Sensors 12(12), 16907–16919 (2012)

    Article  Google Scholar 

  41. Sibinski, M., Jakubowska, M., Sloma, M.: Flexible temperature sensors on fibers. Sensors 10(9), 7934–7946 (2010)

    Article  Google Scholar 

  42. Jung, S., Lauterbach, C., Strasser, M., Weber, W.: Enabling technologies for disappearing electronics in smart textiles. In: Proceedings of IEEE ISSCC03, vol. 1, pp. 386–387 (2003)

    Google Scholar 

  43. Omenetto, F., Kaplan, D., Amsden, J., Dal Negro, L.: U.S. Patent Application No. 13/813,288 (2011)

    Google Scholar 

  44. Meyer, J., Lukowicz, P., Trster, G.: Textile pressure sensor for muscle activity and motion detection. In: 2006 10th IEEE International Symposium on Wearable Computers, pp. 69–72. IEEE (2006)

    Google Scholar 

  45. Stoppa, M., Chiolerio, A.: Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014)

    Article  Google Scholar 

  46. Kim, H., Kim, Y., Kwon, Y.S., Yoo, H.J.: A 1.12 mW continuous healthcare monitor chip integrated on a planar fashionable circuit board. In: IEEE International on Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers, pp. 150–603. IEEE (2008)

    Google Scholar 

  47. Lee, S.K., Kim, B.H., Yoo, H.J.: Planar fashionable circuit board technology and its applications. JSTS: J. Semicond. Technol. Sci. 9(3), 174–180 (2009)

    Google Scholar 

  48. Kim, Y., Kim, H., Yoo, H.J.: Electrical characterization of screen-printed circuits on the fabric. IEEE Trans. Adv. Packag. 33(1), 196–205 (2010)

    Google Scholar 

  49. Marculescu, D., Marculescu, R., Zamora, N.H., Marbell, P.S., Khosla, P.K., Park, S., ... Kirstein, T.: Electronic textiles: a platform for pervasive computing. Proc. IEEE 91(12), 1995–2018 (2003)

    Google Scholar 

  50. McFarland, E.G., Carr, W.W., Sarma, D.S., Dorrity, J.L.: Effects of moisture and fiber type on infrared absorption of fabrics. Text. Res. J. 69(8), 607–615 (1999)

    Article  Google Scholar 

  51. Mattmann, C., Amft, O., Harms, H., Trster, G., Clemens, F.: Recognizing upper body postures using textile strain sensors. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 29–36. IEEE (2007)

    Google Scholar 

  52. E-Textile LabVirginia Tech. Accessed 21 Apr 2016. http://www.ccm.ece.vt.edu:8088/etextiles/

  53. Chi, Y.M., Cauwenberghs, G.: Wireless non-contact EEG/ECG electrodes for body sensor networks. In: 2010 International Conference on Body Sensor Networks (BSN), pp. 297–301. IEEE (2010)

    Google Scholar 

  54. Accessed 10 Dec 2015. http://www.baua.de/de/Informationen-fuer-die-Praxis/Statistiken/Unfaelle/meldepflichtige-Arbeitsunfaelle/pdf/Unfallgeschehen.pdf?__blob=publicationFile&v=9

  55. Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schffer, A., Beyer, A., ... Hirzinger, G.: The KUKA-DLR Lightweight Robot arm-a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), pp. 1–8. VDE (2010)

    Google Scholar 

  56. Haddadin, S., Albu-Schffer, A., Hirzinger, G.: Requirements for safe robots: measurements, analysis and new insights. Int. J. Robot. Res. 28(11–12), 1507–1527 (2009)

    Article  Google Scholar 

  57. Zeising, P., Brending, S., Lawo, M., Pannek, J.: Sichere Mensch-Roboter-Kollaboration durch Pradiktion. Mensch und Computer 2015 Proceedings (2015)

    Google Scholar 

  58. Hoffmann, P., Lawo, M.: AAP Ambient Assisted Protection: Von der klassischen Arbeitssicherheit zur intelligenten Arbeitssicherheitsassistenz. In: Sieck, J. (ed.) Wireless Communication and Information: Mobile Gesellschaft. Hlsbusch (2012)

    Google Scholar 

  59. Breckenfelder, C., Mrugala, D., An, C., Timm-Giel, A., Grg, C., Herzog, O., Lang, W.: A cognitive glove sensor network for fire fighters. In: Intelligent Environments (Workshops), pp. 158–169 (2010)

    Google Scholar 

  60. Breckenfelder, C.: Von persnlicher Schutzbekleidung zu mobilen Schutzassistenzsystemen. Dissertation, University Bremen FB 3, Date completed: 2012-07-13, published as Mobile Schutzassistenz. Accessed 17 Dec 2015. http://www.springer.com/de/book/9783658011277

  61. Meshnetics ZigBit Amp module, Atmel Corporation, 2325 Orchard Parkway, San Jose, Ca 95131 USA. Accessed 21 Apr 2016. http://www.atmel.com/

  62. Mrugala, D.: Einbettung von Sensorsystemen in Arbeitskleidung am Beispiel der Auentemperaturerfassung - Bremen, Univ., Diss. Mnchen: Verl. Dr, Hut. - XVII, 145 S. ISBN: 978-3-8439-1118-4 (2013)

    Google Scholar 

  63. Walters, K., Lee, S., Starner, T., Leibrandt, R., Lawo, M.: Touchfire: towards a glove-mounted tactile display for rendering temperature readings for firefighters. In: 2010 International Symposium on Wearable Computers (ISWC), pp. 1–4. IEEE (2010)

    Google Scholar 

  64. Kombiniertes Indoor - Outdoor Trackingsystem fr Rettungs- und Sicherheitskrfte - InoTrack funded by Bundesministerium fr Wirtschaft und Technologie (BMWi - ZIM), contract FKZ KF2258702MS9

    Google Scholar 

  65. Beauregrad, Stephane: Infrastructureless Pedestrian Positioning, Dissertation, University Bremen, FB 3, 2009. Accessed 15 Dec 2015. http://elib.suub.uni-bremen.de/diss/docs/00011529.pdf

  66. Foxlin, E.: Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 25(6), 38–46 (2005)

    Article  Google Scholar 

  67. Ojeda, L., Borenstein, J.: Non-GPS navigation for emergency responders. In: 2006 International Joint Topical Meeting: Sharing Solutions for Emergencies and Hazardous Environments, pp. 12–15 (2006)

    Google Scholar 

  68. Stirling, R., Fyfe, K., Lachapelle, G.: Evaluation of a new method of heading estimation for pedestrian dead reckoning using shoe mounted sensors. J. Navig. 58(01), 31–45 (2005)

    Article  Google Scholar 

  69. Cavallo, F., Sabatini, A.M., Genovese, V.: A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005), pp. 1187–1191. IEEE (2005)

    Google Scholar 

  70. Beauregard, S., Haas, H.: Pedestrian dead reckoning: a basis for personal positioning. In: Proceedings of the 3rd Workshop on Positioning, Navigation and Communication, pp. 27–35 (2006)

    Google Scholar 

  71. Beauregard, S., Klepal, M., Widyawan, W., Prez, D.L.: Progress in WearIT Work Positioning Technologies. In: 2007 4th International Forum on Applied Wearable Computing (IFAWC), pp. 1–12. VDE (2007)

    Google Scholar 

  72. Nabney, I.: NETLAB: Algorithms for Pattern Recognition. Springer Science & Business Media (2002)

    Google Scholar 

  73. Accessed 18 Dec 2015. http://www.trivisio.com/trivisio-products/colibri-wireless-inertial-motion-tracker-3/

  74. Accessed 18 Dec 2015. http://www.hohenstein.de/media/pdf/270-EN_16_14_Schnittschutzsystem_HORST_2011_3840.pdf

  75. Passler, S., Fischer, W.J.: Food intake activity detection using a wearable microphone system. In: 2011 7th International Conference on Intelligent Environments (IE), pp. 298–301. IEEE (2011)

    Google Scholar 

  76. Passler, S., Fischer, W.J.: Acoustical method for objective food intake monitoring using a wearable sensor system. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 266–269. IEEE (2011)

    Google Scholar 

  77. Sardini, E., Serpelloni, M., Fiorentini, R.: Wireless intraoral sensor for the physiological monitoring of tongue pressure. In: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers and Eurosensors XXVII, pp. 1282–1285. IEEE (2013)

    Google Scholar 

  78. Amft, O., Trster, G.: On-body sensing solutions for automatic dietary monitoring. IEEE Pervasive Comput. 8(2), 62–70 (2009)

    Article  Google Scholar 

  79. Amft, O., Junker, H., Troster, G.: Detection of eating and drinking arm gestures using inertial body-worn sensors, Wearable Computers, 2005. In: Proceedings International Symposium on Ninth IEEE, pp. 160–163. IEEE (2005)

    Google Scholar 

  80. Amft, O., Stger, M., Lukowicz, P., Trster, G.: Analysis of chewing sounds for dietary monitoring. In: UbiComp 2005: Ubiquitous Computing, pp. 56–72. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  81. Nagae, M., Suzuki, K.: A neck-mounted interface for sensing the swallowing activity based on swallowing sound. In: 2011 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBC, pp. 5224–5227. IEEE (2011)

    Google Scholar 

  82. Ertekin, C., Pehlivan, M., Aydodu, I., Ertal, M., Uluda, B., lelebi, G., Yceyar, N.: An electrophysiological investigation of deglutition in man. Muscle Nerve 18(10), 1177–1186 (1995)

    Google Scholar 

  83. Reddy, N.P., Simcox, D.L., Gupta, V., Motta, G.E., Coppenger, J., Das, A., Buch, O.: Biofeedback therapy using accelerometry for treating dysphagic patients with poor laryngeal elevation: case studies. J. Rehabil. Res. Dev. 37(3), 361–372 (2000)

    Google Scholar 

  84. Chen, D., Lawo, M., Zhang, Y., Zhang, T., Gu, Y., Chen, D.: A smart scarf for pulse signal monitoring using a flexible pressure nanosensor. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers: Adjunct Program, pp. 237–242. ACM (2014)

    Google Scholar 

  85. Pang, C., Lee, C., Suh, K.Y.: Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130(3), 1429–1441 (2013)

    Article  Google Scholar 

  86. Wang, X., Gu, Y., Xiong, Z., Cui, Z., Zhang, T.: Electronic skin: silk molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals (Adv. Mater. 9/2014). Adv. Mater. 26(9), 1309–1309 (2014)

    Google Scholar 

  87. Kang, Y., Chen, D., Xia Hou, S., Chen, D.: A wearable swallowing detecting method based on nanometer materials sensor; poster in Proc. CIMTECH 2016, 5–9. June 2016, Perugia/Italy (2016)

    Google Scholar 

  88. Reddy, N.P., Katakam, A., Gupta, V., Unnikrishnan, R., Narayanan, J., Canilang, E.P.: Measurements of acceleration during videofluorographic evaluation of dysphagic patients. Med. Eng. Phys. 22(6), 405–412 (2000)

    Article  Google Scholar 

  89. Denk, D.M., Swoboda, H., Steiner, E.: Physiology of the larynx. Der Radiologe 38(2), 63–70 (1998)

    Article  Google Scholar 

  90. Amft, O., Trster, G.: Recognition of dietary activity events using on-body sensors. Artif. Intell. Med. 42(2), 121–136 (2008)

    Article  Google Scholar 

  91. Starner, T.: Wearable computing: meeting the challenge. In: Barfield, W. (ed.) Fundamentals of Wearable Computers and Augmented Reality, 2nd edn, pp. 13–30. CRC Press (2015)

    Google Scholar 

  92. Schneegass, S., Cheng, J., Van Laerhoven, K., Amft, O.: Workshop on smart garments: sensing, actuation, interaction, and applications in garments. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers: Adjunct Program, pp. 225–229. ACM (2014)

    Google Scholar 

Download references

Acknowledgements

Our thanks go to past and present co-workers being the foundation of the presented outcome: Chunlei An, Hannes Baumann, Stephane Beauregard, Michel Boronowsky, Dmitrij Boger, Stefan Brending, Christof Breckenfelder, Xiao Chen, Guo Chenggang, Christian Dils, Otthein Herzog, Peter Hoffmann, Zhiqi Huang, Hendrik Iben, Yi Kang, Andreas Kemnade, Holger Kenn, Ali Mehmood Khan, Peter Knackfu, Pierre Kirisci, Rdiger Leibrandt, Markus Modzelewski, Yehya Mohamad, Damian Mrugala, Xiahou Shiji, Tan Shuqiu, Hendrik Witt, Li Xinyu, Fan Xiong and Patrick Zeising.

The research had public funding from the European Commission, the German ministry of Research and Development and the German Ministry of Commerce, the Sino-German Research Foundation and many industrial partners mentioned in the cited references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lawo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, D., Lawo, M. (2017). Smart Textiles and Smart Personnel Protective Equipment. In: Schneegass, S., Amft, O. (eds) Smart Textiles. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-50124-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50124-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50123-9

  • Online ISBN: 978-3-319-50124-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics