Smart Textiles pp 199-231 | Cite as

Energy Harvesting Smart Textiles

Part of the Human–Computer Interaction Series book series (HCIS)


The ever-increasing population of the world is putting a significant demand on the need for multifunctional electronic devices and electricity to power them. This growing demand has led to an enhanced focus on the development of energy harvesting techniques based on renewable and ambient sources. Although materials having unique properties such as photovoltaic, piezoelectric and triboelectric have been known for a long time and have been utilized usually in the form of thin-film structures, their utilization in the form of textile structures for energy harvesting is a relatively new area of research. This chapter will focus on the recent advances in the area of photovoltaic, piezoelectric and triboelectric energy-generating textile structures and the fundamentals of these unique properties, production methods and textile-based energy storage. Finally, expected future trends in the fabrication and application of textile-based energy harvesting and storage will be discussed.


Piezoelectric Material Tandem Solar Cell Bicomponent Fibre Conductive Yarn Triboelectric Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Warner, S.B.: Fiber Science. Prentice Hall Englewood Cliffs, New Jersey (1995)Google Scholar
  2. 2.
    Singh, M.K.: Flexible Photovoltaic Textiles for Smart Applications. INTECH Open Access Publisher, Rijeka (2011)Google Scholar
  3. 3.
    Reuter, M., Brendle, W., Tobail, O., Werner, J.H.: 50\(\upmu \)m thin solar cells with 17.0% efficiency. Sol. Energy Mater. Sol. Cells 93(6), 704–706 (2009)CrossRefGoogle Scholar
  4. 4.
    Wang, A., Zhao, J., Wenham, S., Green, M.: 21.5% efficient thin silicon solar cell. Prog. Photovoltaics Res. Appl. 4(1), 55–58 (1996)CrossRefGoogle Scholar
  5. 5.
    Chopra, K., Paulson, P., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004)CrossRefGoogle Scholar
  6. 6.
    Günes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007)CrossRefGoogle Scholar
  7. 7.
    Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)CrossRefGoogle Scholar
  8. 8.
    Sariciftci, N.S.: Polymeric photovoltaic materials. Curr. Opin Solid State Mater. Sci. 4(4), 373–378 (1999)CrossRefGoogle Scholar
  9. 9.
    Ameri, T., Dennler, G., Waldauf, C., Denk, P., Forberich, K., Scharber, M.C., Brabec, C.J., Hingerl, K.: Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. J. Appl. Phys. 103(8), 084506 (2008)CrossRefGoogle Scholar
  10. 10.
    Liang, Y., Wu, Y., Feng, D., Tsai, S.T., Son, H.J., Li, G., Yu, L.: Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131(1), 56–57 (2008)CrossRefGoogle Scholar
  11. 11.
    Gerischer, H., Michel-Beyerle, M., Rebentrost, F., Tributsch, H.: Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13(6), 1509–1515 (1968)CrossRefGoogle Scholar
  12. 12.
    Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRefGoogle Scholar
  13. 13.
    Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRefGoogle Scholar
  15. 15.
    Calogero, G., Calandra, P., Irrera, A., Sinopoli, A., Citro, I., Di Marco, G.: A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 4(5), 1838–1844 (2011)CrossRefGoogle Scholar
  16. 16.
    Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125(5), 1166–1167 (2003)CrossRefGoogle Scholar
  17. 17.
    Bach, U., Lupo, D., Comte, P., Moser, J., Weissörtel, F., Salbeck, J., Spreitzer, H., Grätzel, M.: Solid-state dye-sensitized mesoporous tio2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583–585 (1998)CrossRefGoogle Scholar
  18. 18.
    Han, L., Fukui, A., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Koide, N., Yamanaka, R., Shimizu, M.: Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Appl. Phys. Lett. 94(1), 013305 (2009)CrossRefGoogle Scholar
  19. 19.
    Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nature Mater. 4(6), 455–459 (2005)CrossRefGoogle Scholar
  20. 20.
    Horiuchi, T., Miura, H., Sumioka, K., Uchida, S.: High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126(39), 12218–12219 (2004)CrossRefGoogle Scholar
  21. 21.
    Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(7L), L638 (2006)CrossRefGoogle Scholar
  22. 22.
    Brown, A.S., Green, M.A.: Detailed balance limit for the series constrained two terminal tandem solar cell. Phys. E 14(1), 96–100 (2002)CrossRefGoogle Scholar
  23. 23.
    Bremner, S., Levy, M., Honsberg, C.B.: Analysis of tandem solar cell efficiencies under am 1.5g spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16(3), 225–233 (2008)CrossRefGoogle Scholar
  24. 24.
    Bertness, K., Kurtz, S.R., Friedman, D., Kibbler, A., Kramer, C., Olson, J.: 29.5%-efficient gainp/gaas tandem solar cells. Appl. Phys. Lett. 65(8), 989–991 (1994)CrossRefGoogle Scholar
  25. 25.
    Gilot, J., Wienk, M.M., Janssen, R.A.: Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90(14), 143512 (2007)CrossRefGoogle Scholar
  26. 26.
    Kim, S.S., Na, S.I., Jo, J., Tae, G., Kim, D.Y.: Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 19(24), 4410–4415 (2007)CrossRefGoogle Scholar
  27. 27.
    Dennler, G., Prall, H.J.R., Koeppe, R., Egginger, M., Autengruber, R., Sariciftci, N.S.: Enhanced spectral coverage in tandem organic solar cells. Appl. Phys. Lett. 89(7), 73502–73502 (2006)CrossRefGoogle Scholar
  28. 28.
    Wenger, S., Seyrling, S., Tiwari, A.N., Grätzel, M.: Fabrication and performance of a monolithic dye-sensitized tio2/cu (in, ga) se2 thin film tandem solar cell. Appl. Phys. Lett. 94(17), 173508 (2009)CrossRefGoogle Scholar
  29. 29.
    King, R., Law, D., Edmondson, K., Fetzer, C., Kinsey, G., Yoon, H., Sherif, R., Karam, N.: 40% efficient metamorphic gainp/gainas/ge multijunction solar cells. Applied physics letters 90(18), 183516–183900 (2007)CrossRefGoogle Scholar
  30. 30.
    King, R., Karam, N., Ermer, J., Haddad, M., Colter, P., Isshiki, T., Yoon, H., Cotal, H., Joslin, D., Krut, D., et al.: Next-generation, high-efficiency iii-v multijunction solar cells. In: IEEE Conference Record of the Twenty-Eighth, Photovoltaic Specialists Conference, 2000, pp. 998–1001. IEEE (2000)Google Scholar
  31. 31.
    Günes, S., Sariciftci, N.S.: Hybrid solar cells. Inorg. Chim. Acta 361(3), 581–588 (2008)CrossRefGoogle Scholar
  32. 32.
    van Hal, P.A., Wienk, M.M., Kroon, J.M., Verhees, W.J., Slooff, L.H., van Gennip, W.J., Jonkheijm, P., Janssen, R.A.: Photoinduced electron transfer and photovoltaic response of a mdmo-ppv: Tio2 bulk-heterojunction. Adv. Mater. 15(2), 118–121 (2003)CrossRefGoogle Scholar
  33. 33.
    Mcdonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L., Sargent, E.H.: Solution-processed pbs quantum dot infrared photodetectors and photovoltaics. Adv. Mater. 4(2), 138–142 (2005)Google Scholar
  34. 34.
    Zhang, S., Cyr, P., McDonald, S., Konstantatos, G., Sargent, E.: Enhanced infrared photovoltaic efficiency in pbs nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Appl. Phys. Lett. 87(23), 233101 (2005)CrossRefGoogle Scholar
  35. 35.
    Beek, W.J., Wienk, M.M., Janssen, R.A.: Hybrid solar cells from regioregular polythiophene and zno nanoparticles. Adv. Funct. Mater. 16(8), 1112–1116 (2006)CrossRefGoogle Scholar
  36. 36.
    Olson, D.C., Piris, J., Collins, R.T., Shaheen, S.E., Ginley, D.S.: Hybrid photovoltaic devices of polymer and zno nanofiber composites. Thin Solid Films 496(1), 26–29 (2006)CrossRefGoogle Scholar
  37. 37.
    Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54(24), 17628 (1996)CrossRefGoogle Scholar
  38. 38.
    Ginger, D., Greenham, N.: Photoinduced electron transfer from conjugated polymers to cdse nanocrystals. Phys. Rev. B 59(16), 10622 (1999)CrossRefGoogle Scholar
  39. 39.
    Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)CrossRefGoogle Scholar
  40. 40.
    Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462–465 (2005)CrossRefGoogle Scholar
  41. 41.
    Arici, E., Sariciftci, N.S., Meissner, D.: Hybrid solar cells based on nanoparticles of cuins2 in organic matrices. Adv. Funct. Mater. 13(2), 165–171 (2003)CrossRefGoogle Scholar
  42. 42.
    Curie, J., Curie, P.: Development par compression de lelectricite pollaire dans les cristaux hemledres a faces inclinees. Bulletin (4) (1880)Google Scholar
  43. 43.
    Lippman, G.: Principe de la conservation de l’électricité. Ann. de chimie et de Phys. 24, 381–394 (1881)zbMATHGoogle Scholar
  44. 44.
    Nicolson, A.M.: The piezo electric effect in the composite rochelle salt crystal. Trans. Am. Inst. Electr. Eng. 38(2), 1467–1493 (1919)CrossRefGoogle Scholar
  45. 45.
    Yamaguchi, S.: Surface electric fields of tourmaline. Appl. Phys. A 31(4), 183–185 (1983)CrossRefGoogle Scholar
  46. 46.
    Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Jpn. 10(2), 149–154 (1955)CrossRefGoogle Scholar
  47. 47.
    Bazhenov, V.: Piezoelectric properties of woodGoogle Scholar
  48. 48.
    Fukada, E.: On the piezoelectric effect of silk fibers. J. Phys. Soc. Jpn. 11, 1301 (1956)CrossRefGoogle Scholar
  49. 49.
    Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)CrossRefGoogle Scholar
  50. 50.
    Duchesne, J., Depireux, J., Bertinchamps, A., Cornet, N., Van der Kaa, J.: Thermal and electrical properties of nucleic acids and proteins. Nature 188, 405–406 (1960)CrossRefGoogle Scholar
  51. 51.
    Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3(2), 117 (1964)CrossRefGoogle Scholar
  52. 52.
    Fukada, E., Ando, Y.: Piezoelectricity in oriented dna films. J. Polym. Sci. Part A-2 Polym. Phys. 10(3), 565–567 (1972)CrossRefGoogle Scholar
  53. 53.
    Adachi, M., Kimura, T., Miyamoto, W., Chen, Z., Kawabata, A.: Dielectric, elastic and piezoelectric properties of La\(_3\)Ga\(_{5}\)SiO\(_{14}\) (langasite) single crystals. J. Korean Phys. Soc. 32, S1274–S1277 (1998)Google Scholar
  54. 54.
    Shirane, G., Hoshino, S., Suzuki, K.: X-ray study of the phase transition in lead titanate. Phys. Rev. 80(6), 1105 (1950)CrossRefGoogle Scholar
  55. 55.
    Edelman, S., Jones, E., Smith, E.R.: Some developments in vibration measurement. J. Acoust. Soc. Am. 27(4), 728–734 (1955)CrossRefGoogle Scholar
  56. 56.
    Shirane, G., Suzuki, K.: Crystal structure of pb (zr-ti) o_3. J. Phys. Soc. Jpn. 7(3), 333 (1952)CrossRefGoogle Scholar
  57. 57.
    Sawaguchi, E.: Ferroelectricity versus antiferroelectricity in the solid solutions of pbzro3 and pbtio3. J. Phys. Soc. Jpn. 8(5), 615–629 (1953)CrossRefGoogle Scholar
  58. 58.
    Jaffe, B., Roth, R., Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25(6), 809–810 (1954)CrossRefGoogle Scholar
  59. 59.
    Egerton, L., Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassiumsodium niobate. J. Am. Ceram. Soc. 42(9), 438–442 (1959)CrossRefGoogle Scholar
  60. 60.
    Weis, R., Gaylord, T.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37(4), 191–203 (1985)CrossRefGoogle Scholar
  61. 61.
    Smith, R., Welsh, F.: Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)CrossRefGoogle Scholar
  62. 62.
    Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)CrossRefGoogle Scholar
  63. 63.
    Nalwa, H.S.: Ferroelectric Polymers: Chemistry: Physics, and Applications. CRC Press, Boca Raton (1995)Google Scholar
  64. 64.
    Harrison, J., Ounaies, Z.: Piezoelectric Polymers. Wiley Online Library, New York (2002)Google Scholar
  65. 65.
    Qi, Y., McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3(9), 1275–1285 (2010)CrossRefGoogle Scholar
  66. 66.
    Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)CrossRefGoogle Scholar
  67. 67.
    Swallow, L., Luo, J., Siores, E., Patel, I., Dodds, D.: A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17(2), 025017 (2008)CrossRefGoogle Scholar
  68. 68.
    Patel, I., Siores, E., Shah, T.: Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sens. Actuators Phys. 159(2), 213–218 (2010)CrossRefGoogle Scholar
  69. 69.
    Berlincourt, D.: Piezoelectric ceramics characteristics and applications. J. Acoust. Soc. Am. 68(S1), S40 (1980)CrossRefGoogle Scholar
  70. 70.
    Tanaka, T.: Piezoelectric devices in Japan. Ferroelectrics 40(1), 167–187 (1982)CrossRefGoogle Scholar
  71. 71.
    Tressler, J.F., Newnham, R.E., Hughes, W.J.: Capped ceramic underwater sound projector: the cymbal transducer. J. Acoust. Soc. Am. 105(2), 591–600 (1999)CrossRefGoogle Scholar
  72. 72.
    Woollett, R.: Basic problems caused by depth and size constraints in low-frequency underwater transducers. J. Acoust. Soc. Am. 65(S1), S126–S126 (1979)CrossRefGoogle Scholar
  73. 73.
    Conley, J.K., Kokonaski, W., Parrella, M.J., Machacek, S.L.: Piezo speaker and installation method for laptop personal computer and other multimedia applications (June 10 1997) US Patent 5,638,456Google Scholar
  74. 74.
    Sinelnikov, Y.: Dual-mode piezocomposite ultrasonic transducer (Nov 2011) WO Patent App. PCT/US2011/000,910Google Scholar
  75. 75.
    Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2(4), 241–245 (2003)CrossRefGoogle Scholar
  76. 76.
    Pai, D.M., Springett, B.E.: Physics of electrophotography. Rev. Mod. Phys. 65(1), 163 (1993)CrossRefGoogle Scholar
  77. 77.
    Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z.L.: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)CrossRefGoogle Scholar
  78. 78.
    Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)CrossRefGoogle Scholar
  79. 79.
    LináWang, Z.: Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discus. 176, 447–458 (2014)CrossRefGoogle Scholar
  80. 80.
    Chittibabu, K., Eckert, R., Gaudiana, R., Li, L., Montello, A., Montello, E., Wormser, P.: A flexible fiber core having an outer surface, a photosensitized nanomatrix particle applied to the outer surface, a protective layer, an electroconductive metal and a counter electrode (July 5 2005) US Patent 6,913,713Google Scholar
  81. 81.
    Kuraseko, H., Nakamura, T., Toda, S., Koaizawa, H., Jia, H., Kondo, M.: Development of flexible fiber-type poly-si solar cell. In: IEEE 4th World Conference on Photovoltaic Energy Conversion, Conference Record of the 2006, vol. 2, pp. 1380–1383. IEEE (2006)Google Scholar
  82. 82.
    OConnor, B., Pipe, K.P., Shtein, M.: Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92(19), 193306 (2008)CrossRefGoogle Scholar
  83. 83.
    Liu, J., Namboothiry, M.A., Carroll, D.L.: Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90(6), 063501 (2007)CrossRefGoogle Scholar
  84. 84.
    Bedeloglu, A.C., Demir, A., Bozkurt, Y., Sariciftci, N.S.: A photovoltaic fiber design for smart textiles. Text. Res. J. 80(11), 1065–1074 (2010)CrossRefGoogle Scholar
  85. 85.
    Toivola, M., Ferenets, M., Lund, P., Harlin, A.: Photovoltaic fiber. Thin Solid Films 517(8), 2799–2802 (2009)CrossRefGoogle Scholar
  86. 86.
    Ramier, J., Plummer, C., Leterrier, Y., Månson, J.A., Eckert, B., Gaudiana, R.: Mechanical integrity of dye-sensitized photovoltaic fibers. Renew. Energy 33(2), 314–319 (2008)CrossRefGoogle Scholar
  87. 87.
    Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003)CrossRefGoogle Scholar
  88. 88.
    Li, B., Wang, L., Kang, B., Wang, P., Qiu, Y.: Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006)CrossRefGoogle Scholar
  89. 89.
    Fukada, E.: Piezoelectric properties of organic polymers. Ann. N. Y. Acad. Sci. 238(1), 7–25 (1974)CrossRefGoogle Scholar
  90. 90.
    Kepler, R., Anderson, R.: Piezoelectricity in polymers. Crit. Rev. Solid State Mater. Sci. 9(4), 399–447 (1980)CrossRefGoogle Scholar
  91. 91.
    Wang, T.T., Herbert, J.M., Glass, A.M.: The applications of ferroelectric polymers. Blackie and Son, Bishopbriggs, Glasgow G 64 2 NZ, UK (1988)Google Scholar
  92. 92.
    Fukada, E.: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277–1290 (2000)CrossRefGoogle Scholar
  93. 93.
    Broadhurst, M., Davis, G., McKinney, J., Collins, R.: Piezoelectricity and pyroelectricity in polyvinylidene fluoridea model. J. Appl. Phys. 49(10), 4992–4997 (1978)CrossRefGoogle Scholar
  94. 94.
    Lovinger, A.J.: Poly (vinylidene fluoride). In: Developments in Crystalline Polymers-1, pp. 195–273. Springer (1982)Google Scholar
  95. 95.
    Gallantree, H.: Review of transducer applications of polyvinylidene fluoride. IEE Proc. I (Solid-State and Electron Devices) 130(5), 219–224 (1983)CrossRefGoogle Scholar
  96. 96.
    Tashiro, K.: Crystal structure and phase transition of pvdf and related copolymers. Plast. Eng. New York 28, 63 (1995)Google Scholar
  97. 97.
    Martins, P., Lopes, A., Lanceros-Mendez, S.: Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)CrossRefGoogle Scholar
  98. 98.
    Soin, N., Boyer, D., Prashanthi, K., Sharma, S., Narasimulu, A., Luo, J., Shah, T., Siores, E., Thundat, T.: Exclusive self-aligned \(\beta \)-phase pvdf films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 51(39), 8257–8260 (2015)CrossRefGoogle Scholar
  99. 99.
    Ambrosy, A., Holdik, K.: Piezoelectric pvdf films as ultrasonic transducers. J. Phys. E: Sci. Instrum. 17(10), 856 (1984)CrossRefGoogle Scholar
  100. 100.
    Ramos, M.M., Correia, H.M., Lanceros-Mendez, S.: Atomistic modelling of processes involved in poling of pvdf. Comput. Mater. Sci. 33(1), 230–236 (2005)CrossRefGoogle Scholar
  101. 101.
    Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotech. Adv. 28(3), 325–347 (2010)CrossRefGoogle Scholar
  102. 102.
    Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 v nanogenerator for mechanical energy harvesting using pzt nanofibers. Nano Lett. 10(6), 2133–2137 (2010)CrossRefGoogle Scholar
  103. 103.
    Chang, J., Dommer, M., Chang, C., Lin, L.: Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3), 356–371 (2012)CrossRefGoogle Scholar
  104. 104.
    Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., Hu, A.: Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 122 (2015)Google Scholar
  105. 105.
    Qin, X.H., Wang, S.Y.: Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 102(2), 1285–1290 (2006)CrossRefGoogle Scholar
  106. 106.
    Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281(1), 581–586 (2006)CrossRefGoogle Scholar
  107. 107.
    Heikkilä, P., Taipale, A., Lehtimäki, M., Harlin, A.: Electrospinning of polyamides with different chain compositions for filtration application. Polym. Eng. Sci. 48(6), 1168–1176 (2008)CrossRefGoogle Scholar
  108. 108.
    Yoshimoto, H., Shin, Y., Terai, H., Vacanti, J.: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12), 2077–2082 (2003)CrossRefGoogle Scholar
  109. 109.
    Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005)CrossRefGoogle Scholar
  110. 110.
    Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D.: Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27(3), 504–509 (2007)CrossRefGoogle Scholar
  111. 111.
    Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)CrossRefGoogle Scholar
  112. 112.
    Chang, C., Tran, V.H., Wang, J., Fuh, Y.K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010)CrossRefGoogle Scholar
  113. 113.
    Laudenslager, M.J., Scheffler, R.H., Sigmund, W.M.: Electrospun materials for energy harvesting, conversion, and storage: a review. Pure Appl. Chem. 82(11), 2137–2156 (2010)CrossRefGoogle Scholar
  114. 114.
    Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z.L., Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6(7), 6231–6235 (2012)CrossRefGoogle Scholar
  115. 115.
    Fang, J., Niu, H., Wang, H., Wang, X., Lin, T.: Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6(7), 2196–2202 (2013)CrossRefGoogle Scholar
  116. 116.
    Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007)CrossRefGoogle Scholar
  117. 117.
    Qin, Y., Wang, X., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008)CrossRefGoogle Scholar
  118. 118.
    Yang, R., Qin, Y., Li, C., Zhu, G., Wang, Z.L.: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9(3), 1201–1205 (2009)CrossRefGoogle Scholar
  119. 119.
    Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)CrossRefGoogle Scholar
  120. 120.
    Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)CrossRefGoogle Scholar
  121. 121.
    Chang, J., Lin, L.: Large array electrospun pvdf nanogenerators on a flexible substrate. In: 2011 16th International, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 747–750. IEEE (2011)Google Scholar
  122. 122.
    Fuh, Y.K., Ye, J.C., Chen, P.C., Huang, Z.M.: A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers. J. Mater. Chem. A 2(38), 16101–16106 (2014)CrossRefGoogle Scholar
  123. 123.
    Fang, J., Wang, X., Lin, T.: Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21(30), 11088–11091 (2011)CrossRefGoogle Scholar
  124. 124.
    Zheng, J., He, A., Li, J., Han, C.C.: Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromol. Rapid Commun. 28(22), 2159–2162 (2007)CrossRefGoogle Scholar
  125. 125.
    Ribeiro, C., Sencadas, V., Ribelles, J.L.G., Lanceros-Méndez, S.: Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater. 8(3), 274–287 (2010)CrossRefGoogle Scholar
  126. 126.
    Cui, N., Wu, W., Zhao, Y., Bai, S., Meng, L., Qin, Y., Wang, Z.L.: Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 12(7), 3701–3705 (2012)CrossRefGoogle Scholar
  127. 127.
    Magniez, K., Krajewski, A., Neuenhofer, M., Helmer, R.: Effect of drawing on the molecular orientation and polymorphism of melt-spun polyvinylidene fluoride fibers: Toward the development of piezoelectric force sensors. J. Appl. Polym. Sci. 129(5), 2699–2706 (2013)CrossRefGoogle Scholar
  128. 128.
    Nilsson, E., Lund, A., Jonasson, C., Johansson, C., Hagström, B.: Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A Phys. 201, 477–486 (2013)CrossRefGoogle Scholar
  129. 129.
    Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., et al.: Novel 3-d spacer all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7(5), 1670–1679 (2014)CrossRefGoogle Scholar
  130. 130.
    Hadimani, R.L., Bayramol, D.V., Sion, N., Shah, T., Qian, L., Shi, S., Siores, E.: Continuous production of piezoelectric pvdf fibre for e-textile applications. Smart Mater. Struct. 22(7), 075017 (2013)CrossRefGoogle Scholar
  131. 131.
    Zeng, W., Tao, X.M., Chen, S., Shang, S., Chan, H.L.W., Choy, S.H.: Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6(9), 2631–2638 (2013)CrossRefGoogle Scholar
  132. 132.
    Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRefGoogle Scholar
  133. 133.
    Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G.: Zno nanostructures for dye-sensitized solar cells. Adv. Mater. 21(41), 4087–4108 (2009)CrossRefGoogle Scholar
  134. 134.
    Ko, Y.H., Yu, J.S.: Tunable growth of urchin-shaped zno nanostructures on patterned transparent substrates. Cryst. Eng. Commun. 14(18), 5824–5829 (2012)CrossRefGoogle Scholar
  135. 135.
    Ko, Y.H., Kim, M.S., Park, W., Yu, J.S.: Well-integrated zno nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties. Nanoscale Res. Lett. 8(1), 1–8 (2013)CrossRefGoogle Scholar
  136. 136.
    Gullapalli, H., Vemuru, V.S., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., Ajayan, P.M.: Flexible piezoelectric zno-paper nanocomposite strain sensor. Small 6(15), 1641–1646 (2010)CrossRefGoogle Scholar
  137. 137.
    Khan, A., Hussain, M., Nur, O., Willander, M., Broitman, E.: Analysis of direct and converse piezoelectric responses from zinc oxide nanowires grown on a conductive fabric. Physica Status Solidi (a) 212(3), 579–584 (2015)CrossRefGoogle Scholar
  138. 138.
    Cui, N., Liu, J., Gu, L., Bai, S., Chen, X., Qin, Y.: Wearable triboelectric generator for powering the portable electronic devices. ACS Appl. Mater. Interf. 7(33), 18225–18230 (2015)CrossRefGoogle Scholar
  139. 139.
    Ko, Y.H., Nagaraju, G., Yu, J.S.: Multi-stacked pdms-based triboelectric generators with conductive textile for efficient energy harvesting. RSC Adv. 5(9), 6437–6442 (2015)CrossRefGoogle Scholar
  140. 140.
    Seung, W., Gupta, M.K., Lee, K.Y., Shin, K.S., Lee, J.H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., Kim, S.W.: Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4), 3501–3509 (2015)CrossRefGoogle Scholar
  141. 141.
    Lee, S., Ko, W., Oh, Y., Lee, J., Baek, G., Lee, Y., Sohn, J., Cha, S., Kim, J., Park, J., et al.: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12, 410–418 (2015)CrossRefGoogle Scholar
  142. 142.
    Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.U., Kim, S.W., Wang, Z.L., Baik, J.M.: Highly stretchable 2d fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)CrossRefGoogle Scholar
  143. 143.
    Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y.: Thin, flexible secondary li-ion paper batteries. Acs Nano 4(10), 5843–5848 (2010)CrossRefGoogle Scholar
  144. 144.
    Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J.R., Cui, X., Cui, Y., Bao, Z.: Solution-processed graphene/mno2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11(7), 2905–2911 (2011)CrossRefGoogle Scholar
  145. 145.
    Kwon, Y.H., Woo, S.W., Jung, H.R., Yu, H.K., Kim, K., Oh, B.H., Ahn, S., Lee, S.Y., Song, S.W., Cho, J., et al.: Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24(38), 5192–5197 (2012)CrossRefGoogle Scholar
  146. 146.
    Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., Cao, G., Hu, W., Wang, Z.L.: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27(15), 2472–2478 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Textile EngineeringNamik Kemal UniversityCorlu/TekirdagTurkey
  2. 2.Institute for Materials Research and Innovation (IMRI)University of BoltonBoltonUK
  3. 3.Department of Electronics EngineeringPiraeus University of Applied SciencesEgaleoGreece

Personalised recommendations