Skip to main content

Safe Navigation of Quadrotor Teams to Labeled Goals in Limited Workspaces

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 1)

Abstract

In this work, we solve the labeled multi-robot planning problem. Most proposed algorithms to date have modeled robots as kinematic or kinodynamic agents in planar environments, making them impractical for real-world systems. Here, we present experiments to validate a centralized multi-robot planning and trajectory generation method that explicitly accounts for robots with higher-order dynamics. First, we demonstrate successful execution of solution trajectories. Next, we verify the robustness of the robots’ trajectory tracking to unmodeled external disturbances, in particular, the aerodynamic interactions between co-planar neighbors. Finally, we apply our algorithm to navigating quadrotors away from the downwash of their neighbors to improve safety in three-dimensional workspaces.

Keywords

  • Aerial robotics
  • Trajectory generation
  • Multi-robot planning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-50115-4_51
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-50115-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. 1.

    http://www.asctec.de/en/.

  2. 2.

    http://www.vicon.com/.

References

  1. Enright, J.J., Wurman, P.R.: Optimization and coordinated autonomy in mobile fulfillment systems. In: AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  2. Forbes: Meet amazon prime air, a delivery-by-aerial-drone project, December 2013

    Google Scholar 

  3. Turpin, M., Mohta, K., Michael, N., Kumar, V.: Goal assignment and trajectory planning for large teams of interchangeable robots. Auton. Rob. 37(4), 401–415 (2014)

    CrossRef  Google Scholar 

  4. Goldenberg, M., Felner, A., Stern, R., Sharon, G., Sturtevant, N., Holte, R.C., Schaeffer, J.: Enhanced partial expansion A*. J. Artif. Intell. Res. 50(1), 141–187 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Wagner, G., Choset, H.: Subdimensional expansion for multirobot path planning. Artif. Intell. 219, 1–24 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Yu, J., Rus, D.: An effective algorithmic framework for near optimal multi-robot path planning. In: The International Symposium on Robotics Research (ISRR) (2015)

    Google Scholar 

  7. Luna, R., Bekris, K.E.: Push and swap: Fast cooperative path-finding with completeness guarantees. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI), pp. 294–300 (2011)

    Google Scholar 

  8. Bennewitz, M., Burgard, W., Thrun, S.: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Rob. Auton. Syst. 41(2), 89–99 (2002)

    CrossRef  Google Scholar 

  9. Desaraju, V., How, J.P.: Decentralized path planning for multi-agent teams in complex environments using rapidly-exploring random trees. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4956–4961 (2011)

    Google Scholar 

  10. Wiktor, A., Scobee, D., Messenger, S., Clark, C.: Decentralized and complete multi-robot motion planning in confined spaces. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1175 (2014)

    Google Scholar 

  11. Clark, C.M., Bretl, T., Rock, S.M.: Applying kinodynamic randomized motion planning with a dynamic priority system to multi-robot space systems. In: Proceedings of the 2002 IEEE Aerospace Conference, March 2002

    Google Scholar 

  12. Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Decentralized cooperative policy for conflict resolution in multi-vehicle systems. IEEE Trans. Rob. 23, 1170–1183 (2007)

    CrossRef  Google Scholar 

  13. Alonso-Mora, J., Naegeli, T., Siegwart, R., Beardsley, P.: Collision avoidance for aerial vehicles in multi-agent scenarios. Auton. Rob. 39(1), 101–121 (2015)

    CrossRef  Google Scholar 

  14. Omidshafiei, S., Agha-mohammadi, A., Amato, C., How, J.P : Decentralized control of partially observable markov decision processes using belief space macro-actions. In: IEEE International Conference on Robotics and Automation (ICRA) (2015)

    Google Scholar 

  15. Mohta, K., Turpin, M., Kushleyev, A., Mellinger, D., Michael, N., Kumar, V.: QuadCloud: a rapid response force with quadrotor teams. In: Hsieh, M.A., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 577–590. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23778-7_38

    CrossRef  Google Scholar 

  16. Tang, S., Kumar, V.: A complete algorithm for generating safe trajectories for multi-robot teams. In: International Symposium on Robotics Research (2015)

    Google Scholar 

  17. Tang, S., Kumar, V.: Safe and complete trajectory generation for large teams of robots with higher-order dynamics. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2016

    Google Scholar 

  18. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2520–2525 (2011)

    Google Scholar 

  19. Lee, T., Leok, M., McClamroch, N.H.: Control of complex maneuvers for a quadrotor UAV using geometric methods on SE(3). Asian J. Control Vol. 15, 391–408 (2011)

    CrossRef  MATH  Google Scholar 

  20. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP multiple micro-UAV testbed. IEEE Rob. Autom. Mag. 17(3), 56–65 (2010)

    CrossRef  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of ONR grants N00014-09-1-1051 and N00014-09-1-103, ARL grant W911NF-08-2-0004, ARO grant W911NF-13-1-0350, and Exyn Technologies. Sarah Tang is supported by NSF Research Fellowship Grant No. DGE-1321851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tang, S., Thomas, J., Kumar, V. (2017). Safe Navigation of Quadrotor Teams to Labeled Goals in Limited Workspaces. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)