Node Overlap Removal by Growing a Tree

  • Lev Nachmanson
  • Arlind Nocaj
  • Sergey Bereg
  • Leishi Zhang
  • Alexander Holroyd
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

Node overlap removal is a necessary step in many scenarios including laying out a graph, or visualizing a tag cloud. Our contribution is a new overlap removal algorithm that iteratively builds a Minimum Spanning Tree on a Delaunay triangulation of the node centers and removes the node overlaps by “growing” the tree. The algorithm is simple to implement yet produces high quality layouts. According to our experiments it runs several times faster than the current state-of-the-art methods.

References

  1. 1.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)MATHGoogle Scholar
  2. 2.
    Dwyer, T., Koren, Y., Marriott, K.: IPSEP-COLA: an incremental procedure for separation constraint layout of graphs. IEEE Trans. Vis. Comput. Graph. 12(5), 821–828 (2006)CrossRefGoogle Scholar
  3. 3.
    Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2006. LNCS, pp. 153–164. Springer, Heidelberg (2006). doi:10.1007/11618058_15 CrossRefGoogle Scholar
  4. 4.
    Friedrich, C., Schreiber, F.: Flexible layering in hierarchical drawings with nodes of arbitrary size. In: Estivill-Castro, V., (ed.), ACSC, vol. 26, CRPIT, pp. 369–376. Australian Computer Society (2004)Google Scholar
  5. 5.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  6. 6.
    Gansner, E.R., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph Algorithms Appl. 14(1), 53–74 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Gomez-Nieto, E., Casaca, W., Nonato, L.G., Taubin, G.: Mixed integer optimization for layout arrangement. In: 2013 26th SIBGRAPI-Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 115–122. IEEE (2013)Google Scholar
  10. 10.
    Gomez-Nieto, E., San Roman, F., Pagliosa, P., Casaca, W., Helou, E., de Oliveira, M.F., Nonato, L.: Similarity preserving snippet-based visualization of web search results. IEEE Trans. Vis. Comput. Graph. 20, 457–470 (2013)CrossRefGoogle Scholar
  11. 11.
    Hayashi, K., Inoue, M., Masuzawa, T., Fujiwara, H.: A layout adjustment problem for disjoint rectangles preserving orthogonal order. Syst. Comput. Japan 33(2), 31–42 (2002)CrossRefGoogle Scholar
  12. 12.
    Hu, Y.: Visualizing graphs with node and edge labels. CoRR, abs/0911.0626 (2009)Google Scholar
  13. 13.
    Huang, X., Lai, W.: Force-transfer: a new approach to removing overlapping nodes in graph layout. In: Oudshoorn, M.J. (ed.), ACSC, vol. 16, CRPIT, pp. 349–358. Australian Computer Society (2003)Google Scholar
  14. 14.
    Huang, X., Lai, W., Sajeev, A., Gao, J.: A new algorithm for removing node overlapping in graph visualization. Inf. Sci. 177(14), 2821–2844 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Imamichi, T., Arahori, Y., Gim, J., Hong, S.-H., Nagamochi, H.: Removing node overlaps using multi-sphere scheme. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 296–301. Springer, Heidelberg (2008). doi:10.1007/978-3-642-00219-9_28 CrossRefGoogle Scholar
  16. 16.
    Li, W., Eades, P., Nikolov, N.S.: Using spring algorithms to remove node overlapping. In: Hong, S.-H. (ed.), APVIS, vol. 45, CRPIT, pp. 131–140. Australian Computer Society (2005)Google Scholar
  17. 17.
    Lin, C.-C., Yen, H.-C., Chuang, J.-H.: Drawing graphs with nonuniform nodes using potential fields. J. Vis. Lang. Comput. 20(6), 385–402 (2009)CrossRefGoogle Scholar
  18. 18.
    Lyons, K.A., Meijer, H., Rappaport, D.: Algorithms for cluster busting in anchored graph drawing. J. Graph Algorithms Appl. 2(1), 1–24 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marriott, K., Stuckey, P.J., Tam, V., He, W.: Removing node overlapping in graph layout using constrained optimization. Constraints 8(2), 143–171 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)CrossRefGoogle Scholar
  21. 21.
    Strobelt, H., Spicker, M., Stoffel, A., Keim, D., Deussen, O.: Rolled-out wordles: a heuristic method for overlap removal of 2d data representatives. In: Computer Graphics Forum, vol. 31, pp. 1135–1144. Wiley Online Library (2012)Google Scholar
  22. 22.
    Strobelt, H., Spicker, M., Stoffel, A., Keim, D.A., Deussen, O.: Rolled-out wordles: a heuristic method for overlap removal of 2d data representatives. Comput. Graph. Forum 31(3), 1135–1144 (2012)CrossRefGoogle Scholar
  23. 23.
    Tamassia, R.: Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its Applications). Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  24. 24.
    Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.-J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1995). doi:10.1007/BFb0021835 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lev Nachmanson
    • 1
  • Arlind Nocaj
    • 2
  • Sergey Bereg
    • 3
  • Leishi Zhang
    • 4
  • Alexander Holroyd
    • 1
  1. 1.Microsoft ResearchRedmondUSA
  2. 2.University of KonstanzKonstanzGermany
  3. 3.The University of Texas at DallasRichardsonUSA
  4. 4.Middlesex UniversityLondonUK

Personalised recommendations