Abbot, J., & Marohasy, J. (2012). Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Advances in Atmospheric Sciences, 29(4), 717–730.
CrossRef
Google Scholar
Abbot, J., & Marohasy, J. (2014). Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmospheric Research, 138, 166–178.
CrossRef
Google Scholar
Acharya, N., Shrivastava, N. A., Panigrahi, B., & Mohanty, U. (2013). Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: An application of extreme learning machine. Climate Dynamics, 43(5), 1303–1310.
Google Scholar
Arora, V. K. (2002). The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology, 265(1), 164–177.
CrossRef
Google Scholar
Day, K., Ahrens, D., & Peacock, A. (2010), Seasonal Pacific Ocean Temperature Analysis-1 (SPOTA-1) as at November 1, 2010 (2 pp). Report issued by the Queensland Climate Change Centre of Excellence, Queensland Government, Brisbane, Australia. Retrieved from https://www.longpaddock.qld.gov.au/spota1-getpassword.html.
Dennis, J. E., & Schnabel, R. B. (1983). Numerical methods for unconstrained minimization. Englewood Cliffs: Prentice-Hall.
Google Scholar
Deo, R. C., & Şahin, M. (2015a). Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmospheric Research, 153, 512–525. item: WOS:000347264600041.
Google Scholar
Deo, R. C., & Şahin, M. (2015b). Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmospheric Research, 161, 65–81.
Google Scholar
Deo, R. C., Samui, P., & Kim, D. (2015). Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stochastic Environmental Research and Risk Assessment, 30, 1–16.
Google Scholar
Dogan, S., Berktay, A., & Singh, V. P. (2012). Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey. Journal of Hydrology, 470–471, 255–268.
CrossRef
Google Scholar
Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989–993.
CAS
CrossRef
Google Scholar
Hanson, R. L. (1988). Evapotranspiration and droughts (pp. 99–104). Paulson, RW, Chase, EB, Roberts, RS, and Moody, DW, Compilers, National Water Summary.
Google Scholar
Hargreaves, G. H. (1994). Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 120(6), 1132–1139.
CrossRef
Google Scholar
Hudson, D., Alves, O., Hendon, H. H., & Marshall, A. G. (2011). Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Quarterly Journal of the Royal Meteorological Society, 137(656), 673–689.
CrossRef
Google Scholar
Inquiry, QFCo, & Holmes, CE. (2012). Queensland Floods Commission of Inquiry: Final Report. Queensland Floods Commission of Inquiry.
Google Scholar
Krause, P., Boyle, D., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5(5), 89–97.
CrossRef
Google Scholar
Kuligowski, R. J., & Barros, A. P. (1998). Experiments in short-term precipitation forecasting using artificial neural networks. Monthly Weather Review, 126(2), 470–482.
CrossRef
Google Scholar
Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.
CrossRef
Google Scholar
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.
CrossRef
Google Scholar
McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1–2), 99–115.
CAS
CrossRef
Google Scholar
Mekanik, F., Imteaz, M., Gato-Trinidad, S., & Elmahdi, A. (2013). Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11–21.
CrossRef
Google Scholar
Monteleoni, C., Schmidt, G. A., Saroha, S., & Asplund, E. (2011). Tracking climate models. Statistical Analysis and Data Mining, 4(4), 372–392.
CrossRef
Google Scholar
Morid, S., Smakhtin, V., & Moghaddasi, M. (2006). Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology, 26(7), 971–985.
CrossRef
Google Scholar
Mpelasoka, F., Hennessy, K., Jones, R., & Bates, B. (2008). Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. International Journal of Climatology, 28(10), 1283–1292.
CrossRef
Google Scholar
Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290.
CrossRef
Google Scholar
NRM. (2015). Climate change in Australia, impacts & adaptation information for Australia’s NRM regions. Commonwealth Scientific and Industrial Research Organisation. Accessed April 01, from http://www.climatechangeinaustralia.gov.au/en/impacts-and-adaptation/central-slopes/.
Pandey, R. P., Dash, B. B., Mishra, S. K., & Singh, R. (2008). Study of indices for drought characterization in KBK districts in Orissa (India). Hydrological Processes, 22(12), 1895–1907.
CrossRef
Google Scholar
Paulescu, M., Tulcan-Paulescu, E., & Stefu, N. (2011). A temperature-based model for global solar irradiance and its application to estimate daily irradiation values. International Journal of Energy Research, 35(6), 520–529.
CrossRef
Google Scholar
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (pp. 120–45). The Royal Society.
Google Scholar
Raupach, M., Briggs, P., Haverd, V., King, E., Paget, M., & Trudinger, C. (2008). Australian water availability project (AWAP) (Vol. 2, p. 38). CSIRO Marine and Atmospheric Research Component: Final report for phase.
Google Scholar
Reichler, T., & Kim, J. (2008). How well do coupled models simulate today’s climate? Bulletin of the American Meteorological Society, 89(3), 303–311.
CrossRef
Google Scholar
Reifen, C., & Toumi, R. (2009). Climate projections: Past performance no guarantee of future skill? Geophysical Research Letters, 36(13), L13704.
Google Scholar
Şahin, M. (2012). Modelling of air temperature using remote sensing and artificial neural network in Turkey. Advances in Space Research, 50(7), 973–985.
CrossRef
Google Scholar
Şahin, M., Kaya, Y., & Uyar, M. (2013). Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Advances in Space Research, 51(5), 891–904.
CrossRef
Google Scholar
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.
CrossRef
Google Scholar
Tiwari, M. K., & Adamowski, J. (2013). Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resources Research, 49(10), 6486–6507.
CrossRef
Google Scholar
Ulgen, K., & Hepbasli, A. (2002). ‘Comparison of solar radiation correlations for Izmir, Turkey. International Journal of Energy Research, 26(5), 413–430.
CrossRef
Google Scholar
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010a). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718.
Google Scholar
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M., & El Kenawy, A. (2010b). A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 11(4), 1033–1043.
Google Scholar
Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., et al. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1–27.
CrossRef
Google Scholar
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., et al. (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences, 110(1), 52–57.
CAS
CrossRef
Google Scholar
Vicente‐Serrano, S. M., Beguería, S., & López‐Moreno, J.I. (2011). Comment on “Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008” by Aiguo Dai. Journal of Geophysical Research: Atmospheres, 116, no. D19.
Google Scholar
Vogl, T. P., Mangis, J., Rigler, A., Zink, W., & Alkon, D. (1988). Accelerating the convergence of the back-propagation method. Biological Cybernetics, 59(4–5), 257–263.
CrossRef
Google Scholar
Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194.
Google Scholar
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313.
CrossRef
Google Scholar
Zhao, M., & Hendon, H. H. (2009). Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quarterly Journal of the Royal Meteorological Society, 135(639), 337–352.
CrossRef
Google Scholar