Fodder Legumes for Green Biorefineries: A Perspective for Sustainable Agricultural Production Systems

  • Franka PapendiekEmail author


Peak oil is forcing our society to shift from fossil to renewable resources. However, such renewable resources are also scarce, and they too must be used in the most efficient and sustainable way possible. Biorefining is a concept that represents both resource efficiency (waste reduction) and sustainability. This approach initiates a cascade use, which means food and feed production before material use, and an energy-related use at the end of the value-added chain. However, sustainability must already start in the fields, on the agricultural side, where the industrially-used biomass is produced. The highest premise of the study was to develop an agricultural production system that is more sustainable than existing ones. Fodder legumes, produced in expanded crop rotations are cultivated. They have a very positive environmental impact in agricultural production systems. They are used as bio-industrial feedstock and fodder in the Green Biorefinery approach. Following evidence that both intermediate products are suitable in the biorefining process, a cost-benefit analysis, comparing different production scenarios on a farm, showed that for large farm sizes in particular, the potential profits are high. Therefore, all three pillars of sustainability in agricultural production systems can be improved.


Lactic acid Lucerne Field trials Cost-benefit analysis  


  1. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902. doi: 10.1016/j.biotechadv.2013.04.002 CrossRefGoogle Scholar
  2. Amt für Statistik Berlin-Brandenburg (2010a) Time series on Viehbestand und tierische Erzeugung im Land Brandenburg (1990–2009). Dataset provided on requestGoogle Scholar
  3. Amt für Statistik Berlin-Brandenburg (2010b) Time series on Bodennutzung der landwirtschafltichen Betriebe im Land Brandenburg (1990–2009). Dataset provided on requestGoogle Scholar
  4. Becker N, Emde F, Jessel B, Kärcher A, Schuster B, Seifert C, Ammermann K, Balzer S, Benzler A, Dietrich K, Dünnfelder H, Ellwanger G, Finck P, Heym A, Job-Hoben B, Krug A, Mues A, Natho S, Schweppe-Kraft B, SSymank A, Strauß C, Vischer-Leopold M, Zueghart W (2014) Grünland-report - Alles im Grünen Bereich? Bundesamt für Naturschutz, BonnGoogle Scholar
  5. BMELV (2012) Eiweißpflanzenstrategie des BMELV. Bundesministerium für Ernährung, Landwirtschaft u. Verbraucherschutz (BMELV), Berlin, Germany, p 13Google Scholar
  6. Bryant AM, Carruthers VR, Trigg TE (1983) Nutritive value of pressed herbage residues for lactating dairy cows. New Zealand J Agric Res 26:79–84. doi: 10.1080/00288233.1983.10420954 CrossRefGoogle Scholar
  7. Clark JH, Deswarte FEI (2015) The biorefinery concept: an integrated approach. In: Clark JH, Deswarte FEI (eds) Introduction to chemicals from biomass. Wiley, New York, p 344Google Scholar
  8. Committee on Agriculture and Rural Development (2011) The EU protein deficit: what solution for a long-standing problem? (2010/2111(INI)). European Parliament, Straßburg, France 17Google Scholar
  9. Council of the European Union (2014) Use of plastic bags: agreement on phasing down. P. Release, BrusselsGoogle Scholar
  10. DAFA (2015) The grassland expert forum—draft, Deutsche Agrarforschungsallianz (DAFA) c/o Johann-Heinrich-von-Thünen-Inst., Braunschweig, GermanyGoogle Scholar
  11. de Jong E, Langeveld H, van Ree R (eds) (2009) IEA bioenergy task 42 biorefinery. pp 1–26. Available online at:, last access 15 May 2010
  12. European Bioplastics (2012) What are bioplastics? Fact sheet., last access: 13 Aug 2012
  13. Freyer B (2003) Fruchtfolgen – Konventionell, Integriert. Biologisch Eugen Ulmer GmbH & Co., Stuttgart, GermanyGoogle Scholar
  14. Gerowitt B, Schröder S, Dempfle L, Engels E-M, Engels J, Feindt PH, Graner A, Hamm U, Heißenhuber A, Schulte-Coerne H, Wolters V, Scientific Advisory Board for Biodiversity and Genetic Resources at the Federal Ministry of Consumer Protection F.a.A.B. (2013) Biodiversity in grasslands—indispensable for agriculture and society. Federal Ministry of Consumer Protection, Food and Agriculture (BMELV), p 20Google Scholar
  15. Gooding MJ, Kasyanova E, Ruske R, Hauggaard-Nielsen H, Jensen ES, Dahlmann C, Von Fragstein P, Dibet A, Corre-Hellou G, Crozat Y, Pristerf A, Romeo M, Monti M, Launay M (2007) Intercropping with pulses to concentrate nitrogen and sulphur in wheat. J Agric Sci 145:469–479. doi: 10.1017/s0021859607007241 CrossRefGoogle Scholar
  16. Grzebisz W, Kryszak J, Szczepaniak W, Gaj R (2001) Cultivation of legumes and grass/legume mixtures on arable land as a sustainable management. In: Horst WJ et al (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Kluwer Academic Publishers, Dordrecht, pp 1006–1007Google Scholar
  17. Hejcman M, Kunzova E, Srek P (2012) Sustainability of winter wheat production over 50 years of crop rotation and N, P and K fertilizer application on illimerized luvisol in the Czech Republic. Field Crops Res 139:30–38. doi: 10.1016/j.fcr.2012.10.005 CrossRefGoogle Scholar
  18. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustainable Dev 32:329–364. doi: 10.1007/s13593-011-0056-7
  19. Jim Jem K, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly(lactic acid) and their industrial applications. Plastics from Bacteria Microbiology Monographs 323–346Google Scholar
  20. Kahnt G (2008) Leguminosen im konventionellen und ökologischen Landbau DLG Verlags-GmbH, Frankfurt am Main, GermanyGoogle Scholar
  21. Koschuh W, Kromus S, Krotscheck C (2003) Grüne Bioraffinerie - Gewinnung von Proteinen aus Grassäften, Berichte aus Energie- und Umweltforschung, Kornberg Institut. pp 1–256Google Scholar
  22. Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6:426–464. doi: 10.1039/c2ee23440h CrossRefGoogle Scholar
  23. Lu CD, Jorgensen NA, Barrington GP (1979) Wet fractionation process: preservation and utilization of pressed alfalfa forage. J Dairy Sci 62:1399–1407CrossRefGoogle Scholar
  24. Madhavan NK, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. doi: 10.1016/j.biortech.2010.05.092 CrossRefGoogle Scholar
  25. Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi: 10.1051/agro:2007057 CrossRefGoogle Scholar
  26. National Research Council (2002) Tropical legumes: resources for the future books for business. New York, Hong KongGoogle Scholar
  27. Papendiek F (2016) Fodder legumes for green biorefineries: a perspective for sustainable agricultural production systems. University Potsdam, GermanyGoogle Scholar
  28. Papendiek F, Venus J (2014) Cultivation and fractionation of leguminous biomass for lactic acid production. Chem Biochem Eng Q 28:375–382. doi: 10.15255/CABEQ.2013.1854 CrossRefGoogle Scholar
  29. Papendiek F, Ende HP, Steinhardt U, Wiggering H (2012) Biorefineries: relocating biomass refineries to the rural areas. Landscape Online 27:9Google Scholar
  30. Papendiek F, Tartiu VE, Morone P, Venus J, Hönig A (2015) Assessing the economic profitability of fodder legume production for green biorefineries—a cost-benefit analysis to evaluate farmers profitability. J Clean Prod. doi: 10.1016/j.jclepro.2015.07.108 Google Scholar
  31. Parajuli R, Dalgaard T, Jorgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjorring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sustain Energy Rev 43:244–263. doi: 10.1016/j.rser.2014.11.041 CrossRefGoogle Scholar
  32. Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21(4):1055–1067. doi: 10.1890/09-0456.1 CrossRefGoogle Scholar
  33. Schreuder R, De Visser C (2014) Report EIP-Agri focus group protein crops: final report. European Commission, Brussels, Belgium 49Google Scholar
  34. SpecialChem (2014) Global lactic acid market to grow at a CAGR of 15.5% from 2014–20: Grand view research 2014., last access: 30.03.2015
  35. Venus J (2006) Utilization of renewables for lactic acid fermentation. Biotechnol J 1:1428–1432. doi: 10.1002/biot.200600180 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Head Office of the German Council of Science and HumanitiesResearch Infrastructure (Forschungsinfrastrukturen)CologneGermany

Personalised recommendations