Decreasing Greenhouse Gas Emissions of Meat Products Through Food Waste Reduction. A Framework for a Sustainability Assessment Approach

  • Thomas Winkler
  • Ralf AschemannEmail author


The global food production industry is responsible for producing high levels of greenhouse gas (GHG) emissions. Along the entire food supply chain (FSC), potential for mitigation exists because approximately one-third of all food globally produced is wasted, equivalent to 1.3 billion tons per year. On a global scale, emissions from livestock production are about 4600–7100 Mt CO2-eq/year when considered over the whole life cycle. These numbers represent roughly 9.4–14.5% of the total global GHG emissions. In Austria, the livestock sector was responsible for producing about 11.6% of the total GHG emissions in 2012 as a result of the production of about 909,000 t of meat. A high potential for mitigation of GHG emissions from livestock production exists, especially during the farming and production phases. A reduction in meat waste would, in the long-term, directly reduce GHG emissions stemming from livestock production. Two scenarios were considered to assess the GHG mitigation potential of waste from meat production: a business-as-usual (BAU) scenario and a reduction (RED) scenario (assuming a one-third reduction in waste from meat production in Austria). Because food waste is influenced by several phenomena along the FSC, taking an approach such as the life cycle assessment (LCA) offers only a partial solution. By using a Sustainability Impact Assessment (SIA) approach, researchers can consider social, economic and ecological impacts. It is possible to analyze and compare food waste reduction potentials through the use of such a tool, which can support GHG mitigation efforts in terms of their social, environmental and economic contribution to the livestock and meat processing sector. This approach allowed the identification of indicators that contribute to all sustainability dimensions and support the conclusion that preventing waste from meat processing would save at least 4.8 Mt CO2-eq emissions per year in Austria, which represented 6% of Austria’s total CO2-eq emissions in 2012.


Food supply chain Food waste Sustainability impact assessment Greenhouse gas emissions Austria 


  1. ARE (2004) Sustainability assessment: conceptual framework and basic methodology [cited 9 June 2015]. Available from:
  2. Bernhofer V (2009) Monetäre Bewertung von Lebensmittelabfällen im Restmüll aus Konsumentensicht im Untersuchungsgebiet Salzburg. Master’s thesis, WienGoogle Scholar
  3. Castanheira EG, Freire F (2013) Greenhouse gas assessment of soybean production: implications of land use change and different cultivation systems. J Clean Prod 54:49–60CrossRefGoogle Scholar
  4. Chislock MF, Doster E, Zitomer RA, Wilson AE (2013) Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nat Educ Knowl 4(4):10Google Scholar
  5. De Vries M, De Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Liv Sci 128:1–11CrossRefGoogle Scholar
  6. European Commission (2005) Integrated pollution prevention and control—reference document on best available techniques in the slaughterhouses and animal by-products industriesGoogle Scholar
  7. European Commission (2006) Environmental impact of products (EIPRO). SpainGoogle Scholar
  8. European Commission (2008) Green paper on the management of bio-waste in the European Union, BrusselsGoogle Scholar
  9. European Environment Agency (2014) Approximated EU GHG inventory: proxy GHG estimates for 2013. EEA Technical report, No 16/2014, European Environment Agency, CopenhagenGoogle Scholar
  10. European Parliament (1999) Council directive 1999/31/EC of 26 April 1999 on the landfill of waste EU Parliament, BrusselsGoogle Scholar
  11. European Parliament (2002) Regulation (EC) No 178/2002 of the parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European food safety authority and laying down procedures in matters of food safety. EU Parliament, BrusselsGoogle Scholar
  12. European Parliament (2008) Directive 2008/98/EC of the European parliament and of the council of 19 November 2008 on waste and repealing certain directives. EU Parliament, BrusselsGoogle Scholar
  13. European Union (2011) Food: from farm to fork. European Union, LuxembourgGoogle Scholar
  14. Eurostat (2015) Slaughtering in slaughterhouses—annual data [cited 31 May 2016]. Available from:
  15. FAO (n.d.) Cattle body weights [cited 10 Jun 2015]. Available from:
  16. FAO (2011) Global food losses and food waste—extent, causes and prevention. FAO, RomeGoogle Scholar
  17. FAO (2013) Food wastage footprint—impact on natural resources. Technical report. FAO. RomeGoogle Scholar
  18. FAOSTAT (2015a) Emissions agriculture/enteric fermentation [cited 5 Jan 2015]. Available from:
  19. FAOSTAT (2015b) Emissions agriculture/manure management [cited 5 Jan 2015]. Available from:
  20. FAOSTAT (2015c) Emissions agriculture/manure applied to soils [cited 5 Jan 2015]. Available from:
  21. FAOSTAT (2015d) Emissions agriculture/manure left on pasture [cited 5 Jan 2015]. Available from:
  22. Fusions (2014) FUSIONS definitional framework for food waste. Full report [cited 3 Sept 2015]. Available from:
  23. Gerbens-Leenes PW, Mekonnen MM, Hoekstra AY (2013) The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Resour Ind 1–2:25–36CrossRefGoogle Scholar
  24. Global 2000 (n.d) Fleischatlas Österreich—Zurück zum Sonntagsbraten [cited 21 Aug 2015]. Available from:
  25. Hinterberger F, Burger E, Sellner G (2011) Schweinfleischproduktion in Österreich—Klimaauswirkung und Ressourceneffizienz. SERI Nachhaltigkeitsforschung- und -kommunikation, WienGoogle Scholar
  26. Humanresearch (2015) Worldwide animal slaughter statistics [cited 10 Jun 2015]. Available from:
  27. IPCC (2014) Summary for policymakers. climate change 2014: Mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K et al (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  28. Katajajuuri J-M, Silvennoinen K, Hartikainen H, Heikkilä L, Reinikainen A (2014) Food waste in the Finnish food chain. J Clean Prod 73: 322–329. doi: 10.1016/j.jclepro.2013.12.057
  29. Kranert M, Schneider F, Hafner G, Lebersorger S, Barabosz J, Scherhaufer S et al (2012) Ermittlung der weggeworfenen Lebensmittelmengen und Vorschläge zur Minderung der Wegwerfrate bei Lebensmitteln in Deutschland [Identification of food waste amounts and suggestions for minimizing food waste in Germany]. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, StuttgartGoogle Scholar
  30. Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P et al (2010) Evaluation of the livestock sector’s contribution to the EU greenhouse gas emissions (GGELS), Administrative Arrangements AGRI-2008–0245 and AGRI-2009-0296. European Commission, Joint Research Center, ItalyGoogle Scholar
  31. Lesschen JP, van den Berg M, Westhoek HJ, Witzke HP, Oenema O (2011) Greenhouse gas emission profiles of European livestock sectors. Anim Feed Sci Technol 166–167:16–28CrossRefGoogle Scholar
  32. MA 48 (2014) Leistungsbericht 2014. MA 48—Abfallwirtschaft, Straßenreinigung und Fuhrpark, WienGoogle Scholar
  33. Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15(3):401–415CrossRefGoogle Scholar
  34. Monier V, Mudgal S, Escalon V, Reisinger H, Dolley P, Ogilvie S, et al (2010) Preparatory study on food waste across EU 27. Technical report—2010-054, European Commission, BrusselsGoogle Scholar
  35. Moveforhunger (2016) France cracks down on food waste [cited 30 May 2016]. Available from
  36. Ness B, Urbel-Piirsalu E, Anderberg S, Olsson L (2007) Ecol Econ 60:498–508CrossRefGoogle Scholar
  37. Nguyen TP (2012) Greenhouse gas emissions from composting and anaerobic digestion plants. Dissertation. Rheinische Friedrich-Wilhelms-Universität, BonnGoogle Scholar
  38. Obersteiner G, Schneider F (2006) NÖ Restmüllanalysen 2005/06. Studie im Auftrag des NÖ Abfallwirtschaftsverein. WienGoogle Scholar
  39. OECD (2010) Guidance on sustainability impact assessments. OECD, ParisGoogle Scholar
  40. Papargyropoulou E, Lozano R, Steinberger JK, Wright N, Ujang ZB (2014) The food waste hierarchy as a framework for the management of food surplus and food waste. J Clean Prod 76:106–115CrossRefGoogle Scholar
  41. Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Phil Trans R Soc B 365:3065–3081CrossRefGoogle Scholar
  42. Partito Democratico (2015) Spreco zero, in commissione la legge Pd [cited 27 Aug 2015]. Available from:
  43. Pope J, Annandale D, Morrison-Saunders A (2004) Environ Impact Asses 24:595–616CrossRefGoogle Scholar
  44. Quested T, Johnson H (2009) Household food and drink waste in the UK. WRAP, OxonGoogle Scholar
  45. Ridoutt BG, Sanguansri P, Harper GS (2011) Comparing carbon and water footprints for beef cattle production in Southern Australia. Sustainability 3(12):2443–2455CrossRefGoogle Scholar
  46. Salhofer S, Obersteiner G, Schneider F, Lebersorger S (2008) Potentials for the prevention of municipal solid waste. Waste Manag 28(2):245–259CrossRefGoogle Scholar
  47. Schneider F, Lebersorger S (2009) Untersuchung der Lebensmittel im Restmüll in einer oberösterreichischen Region. Amt der OÖ Landesregierung, Direktion Umwelt und Wasserwirtschaft, LinzGoogle Scholar
  48. Selzer MM (2010) Die Entsorgung von Lebensmittel in Haushalten: Ursachen—Flüsse—Zusammenhänge. Diploma thesis. WienGoogle Scholar
  49. Senat (2015) Séance du 26 mai 2015 (compte rendu intégral des débats) [cited 8 Jun 2015]. Available from:
  50. Singh RK, Murty HR, Gupta SK, Dikshit AK (2012) An overview of sustainability assessment methodologies. Ecol Indic 9:189–212CrossRefGoogle Scholar
  51. Stadtwerke Karlsruhe (2014) Karlsruher Trinkwasser—nahezu klimaneutral [cited 21 Aug 2015]. Available from:…/trinkwasser-klimaneutral.pdf
  52. Statistik Austria (2012) Der Außenhandel Österreichs. Statistik Austria, WienGoogle Scholar
  53. Statistik Austria (2013) Versorgungsbilanzen für tierische Produkte. Statistik Austria, WienGoogle Scholar
  54. Statistik Austria (2014a) Lebend- & Schlachtgewichte—Jahresergebnis 2014. Statistik Austria, WienGoogle Scholar
  55. Statistik Austria (2014b) Statistik der Landwirtschaft. Statistik Austria, WienGoogle Scholar
  56. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  57. TAB (2015) Büro für Technikfolgenabschätzung beim Deutschen Bundestag. TAB-Fokus No. 6 regarding Report No. 163. Opportunities and criteria for a sustainability level [cited 3 Sept 2015]. Available at:
  58. Umweltbundesamt (2014a) Austria’s National Inventory Report 2014. REP-0475. BMLFUW, Wien, ViennaGoogle Scholar
  59. Umweltbundesamt (2014b) Berechnung von Treibhausgas (THG)-Emissionen verschiedener Energieträger [cited 21 Aug 2015]. Available from:
  60. UNFCCC (2006) Updated UNFCCC reporting guidelines on annual inventories following incorporation of the provisions of decision 14/CP.1l. United Nations Framework Convention on Climate Change, Note by the secretariat, FCCC/SBSTA/2006/9Google Scholar
  61. United Nations (2015) United Nations sustainable development summit 2015 [cited 3 Sept 2015]. Available from:
  62. USDA (2012) Food processing ingredients—an overview on the austrian food processing sector. USDA Foreign Agriculture Service, WashingtonGoogle Scholar
  63. Weiss F, Leip A (2012) Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agric Ecosyst Environ 149:124–134CrossRefGoogle Scholar
  64. Winkler T, Schopf K, Aschemann R, Winiwarter W (2016) From farm to fork—a life cycle assessment of fresh Austrian pork. J Clean Prod 116:80–89. doi: 10.1016/j.jclepro.2016.01.005
  65. Winkler T, Winiwarter W (2015) Greenhouse gas emission scenarios of livestock in Austria. J Int Env Sci 12:107–119. doi: 10.1080/1943815X.2015.1110186
  66. WWF (2014) Soy report card—assessing the use of responsible soy for animal feed in Europe. WWF, Gland, SwitzerlandGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Systems Sciences, Innovation and Sustainability ResearchUniversity of GrazGrazAustria

Personalised recommendations