Skip to main content

Effective Bi-immunity and Randomness

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

We study the relationship between randomness and effective bi-immunity. Greenberg and Miller have shown that for any oracle X, there are arbitrarily slow-growing \(\mathrm {DNR}\) functions relative to X that compute no Martin-Löf random set. We show that the same holds when Martin-Löf randomness is replaced with effective bi-immunity. It follows that there are sequences of effective Hausdorff dimension 1 that compute no effectively bi-immune set.

We also establish an important difference between the two properties. The class Low(MLR, EBI) of oracles relative to which every Martin-Löf random is effectively bi-immune contains the jump-traceable sets, and is therefore of cardinality continuum.

This work was partially supported by a grant from the Simons Foundation (#315188 to Bjørn Kjos-Hanssen). This material is based upon work supported by the National Science Foundation under Grant No. 1545707.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A simple set is an r.e. set whose complement is immune.

  2. 2.

    We use the recursion theorem here.

References

  1. Ambos-Spies, K., Kjos-Hanssen, B., Lempp, S., Slaman, T.A.: Comparing DNR and WWKL. J. Symbolic Logic 69(4), 1089–1104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barmpalias, G., Lewis, A.E.M., Ng, K.M.: The importance of \(\Pi ^0_1\) classes in effective randomness. J. Symbolic Logic 75(1), 387–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beros, A.A.: A DNC function that computes no effectively bi-immune set. Arch. Math. Logic 54(5–6), 521–530 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Greenberg, N., Miller, J.S.: Lowness for Kurtz randomness. J. Symbolic Logic 74(2), 665–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Greenberg, N., Miller, J.S.: Diagonally non-recursive functions and effective Hausdorff dimension. Bull. Lond. Math. Soc. 43(4), 636–654 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jockusch Jr., C.G.: Degrees of functions with no fixed points. In: Logic, methodology and philosophy of science, VIII (Moscow, 1987), vol. 126. Studies in Logic and the Foundations of Mathematics, pp. 191–201, North-Holland, Amsterdam (1989)

    Google Scholar 

  7. Jockusch Jr., C.G., Lewis, A.E.M.: Diagonally non-computable functions and bi-immunity. J. Symbolic Logic 78(3), 977–988 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)

    MATH  Google Scholar 

  9. Khan, M., Miller, J.S.: Forcing with bushy trees. http://www.math.hawaii.edu/khan/bushy_trees.pdf

  10. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recursion theorem. Trans. Amer. Math. Soc. 363(10), 5465–5480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martin, D.A.: Completeness, the recursion theorem, and effectively simple sets. Proc. Am. Math. Soc. 17(4), 838–842 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing degrees. J. Symbolic Logic 70(2), 515–535 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Post, E.L.: Recursively enumerable sets of positive integers and their decision problems. Bull. Amer. Math. Soc. 50, 284–316 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sacks, G.E.: A simple set which is not effectively simple. Proc. Am. Math. Soc. 15(1), 51–55 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Smullyan, R.M.: Effectively simple sets. Proc. Am. Math. Soc. 15(6), 893–895 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stephan, F.: Martin-Löf random and PA-complete sets. In: Logic Colloquium 2002, vol. 27. Lecture Notes in Logic, pp. 342–348. Association for Symbolic Logic, La Jolla, CA (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Uri Andrews, Daniel Turetsky, Linda Westrick, Rohit Nagpal, and Ashutosh Kumar for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Kjos-Hanssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beros, A.A., Khan, M., Kjos-Hanssen, B. (2017). Effective Bi-immunity and Randomness. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics