Skip to main content

The Vitali Covering Theorem in the Weihrauch Lattice

  • Chapter
  • First Online:
Book cover Computability and Complexity

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

We study the uniform computational content of the Vitali Covering Theorem for intervals using the tool of Weihrauch reducibility. We show that a more detailed picture emerges than what a related study by Giusto, Brown, and Simpson has revealed in the setting of reverse mathematics. In particular, different formulations of the Vitali Covering Theorem turn out to have different uniform computational content. These versions are either computable or closely related to uniform variants of Weak Weak Kőnig’s Lemma.

This article is dedicated to Rod Downey on the occasion of his sixtieth birthday.

Vasco Brattka is supported by the National Research Foundation of South Africa.

Rupert Hölzl was partly supported by the Ministry of Education of Singapore through grant R146-000-184-112 (MOE2013-T2-1-062).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a slight ambiguity here, as we need to deal with open sets ranging beyond \({[0,1]}\). We shall understand these to be small enough in the sense that we cut away everything from a certain distance \(\varepsilon _n\) on. The exact constraints that these values \(\varepsilon _n\) need to satisfy are given in the proof.

References

  1. Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis theorem. Ann. Pure Appl. Logic 163, 986–1008 (2012). http://dx.doi.org/10.1016/j.apal.2011.12.020

    Article  MathSciNet  MATH  Google Scholar 

  2. Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis. Bull. Symbolic Logic 17(1), 73–117 (2011). http://dx.doi.org/10.2178/bsl/1294186663

    Article  MathSciNet  MATH  Google Scholar 

  3. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability. J. Symbolic Logic 76(1), 143–176 (2011). http://dx.doi.org/10.2178/jsl/1294170993

    Article  MathSciNet  MATH  Google Scholar 

  4. Brattka, V., Gherardi, G., Hölzl, R.: Las Vegas computability and algorithmic randomness. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 130–142. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2015). http://drops.dagstuhl.de/opus/volltexte/2015/4909

  5. Brattka, V., Gherardi, G., Hölzl, R.: Probabilistic computability and choice. Inf. Comput. 242, 249–286 (2015). http://dx.doi.org/10.1016/j.ic.2015.03.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Brattka, V., Gherardi, G., Marcone, A.: The Bolzano-Weierstrass theorem is the jump of weak Kőnig’s lemma. Ann. Pure Appl. Logic 163, 623–655 (2012). http://dx.doi.org/10.1016/j.apal.2011.10.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Brattka, V., Hendtlass, M., Kreuzer, A.P.: On the uniform computational content of the Baire category theorem. Notre Dame J. Formal Logic (2016). http://arxiv.org/abs/1510.01913

  8. Brattka, V., Pauly, A.: Computation with advice. In: Zheng, X., Zhong, N. (eds.) CCA 2010, Proceedings of the Seventh International Conference on Computability and Complexity in Analysis, Electronic Proceedings in Theoretical Computer Science, pp. 41–55 (2010). http://dx.doi.org/10.4204/EPTCS.24.9

  9. Brattka, V., Rakotoniaina, T.: On the uniform computational content of Ramsey’s theorem. arXiv:1508.00471 (2015)

  10. Brown, D.K., Giusto, M., Simpson, S.G.: Vitali’s theorem and WWKL. Arch. Math. Logic 41(2), 191–206 (2002). http://dx.doi.org/10.1007/s001530100100

    Article  MathSciNet  MATH  Google Scholar 

  11. Diener, H., Hedin, A.: The Vitali covering theorem in constructive mathematics. J. Logic Anal. 4(7), 22 (2012). http://dx.doi.org/10.4115/jla.2012.4.7

    MathSciNet  MATH  Google Scholar 

  12. Dorais, F.G., Dzhafarov, D.D., Hirst, J.L., Mileti, J.R., Shafer, P.: On uniform relationships between combinatorial problems. Trans. Am. Math. Soc. 368(2), 1321–1359 (2016). http://dx.doi.org/10.1090/tran/6465

    Article  MathSciNet  MATH  Google Scholar 

  13. Gherardi, G., Marcone, A.: How incomputable is the separable Hahn-Banach theorem? Notre Dame J. Formal Logic 50(4), 393–425 (2009). http://dx.doi.org/10.1215/00294527-2009-018

    Article  MathSciNet  MATH  Google Scholar 

  14. Kreisel, G., Lacombe, D.: Ensembles récursivement mesurables et ensembles récursivement ouverts et fermés. Comptes Rendus Académie des Sciences Paris 245, 1106–1109 (1957)

    MATH  Google Scholar 

  15. Pauly, A.: How incomputable is finding Nash equilibria? J. Univ. Comput. Sci. 16(18), 2686–2710 (2010). http://dx.doi.org/10.3217/jucs-016-18-2686

    MathSciNet  MATH  Google Scholar 

  16. Pauly, A.: On the (semi)lattices induced by continuous reducibilities. Math. Logic Q. 56(5), 488–502 (2010). http://dx.doi.org/10.1002/malq.200910104

    Article  MathSciNet  MATH  Google Scholar 

  17. Pauly, A.: On the topological aspects of the theory of represented spaces. Computability 5(2), 159–180 (2016). http://dx.doi.org/10.3233/COM-150049

    Article  MathSciNet  MATH  Google Scholar 

  18. Richardson, L.F.: Measure and Integration. Wiley, Hoboken (2009). http://dx.doi.org/10.1002/9780470501153. (A concise introduction to real analysis)

  19. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, Association for Symbolic Logic, 2nd edn. Cambridge University Press, Poughkeepsie (2009)

    Book  MATH  Google Scholar 

  20. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco Brattka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brattka, V., Gherardi, G., Hölzl, R., Pauly, A. (2017). The Vitali Covering Theorem in the Weihrauch Lattice. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics