Physical Unclonable Functions and Intellectual Property Protection Techniques

  • Ramesh Karri
  • Ozgur Sinanoglu
  • Jeyavijayan Rajendran
Chapter

Abstract

On one hand, traditionally, secure systems rely on hardware to store the keys for cryptographic protocols. Such an approach is becoming increasingly insecure, due to hardware-intrinsic vulnerabilities. A physical unclonable function (PUF) is a security primitive that exploits inherent hardware properties to generate keys on the fly, instead of storing them. On the other hand, the integrated circuit (IC) design flow is globalized due to increase in design, fabrication, testing, and verification costs. While globalization has provided cost benefits and reduced the time-to-market, it has introduced several attacks such as piracy, malicious modifications, and counterfeiting. To thwart these attacks, researchers have developed techniques that modify the designs and include additional components into the design. Such techniques are collectively called intellectual property (IP) protection techniques. In this chapter, we describe two classes of hardware security techniques: PUFs and IP protection techniques.

References

  1. 1.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Advances in cryptology (CRYPTO 99). Lect. Notes Comput. Sci. 1666, 388–397 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    SEMI. Innovation is at risk as semiconductor equipment and materials industry loses up to $4 billion annually due to IP infringement (2008). www.semi.org/en/Press/P043775
  3. 3.
    Herder, C., Yu, M.-D., Koushanfar, F., Devadas, S.: Physical unclonable functions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)Google Scholar
  4. 4.
    Guin, Ujjwal, DiMase, Daniel, Tehranipoor, Mohammad: Counterfeit integrated circuits: detection, avoidance, and the challenges ahead. J. Electron. Test. 30(1), 9–23 (2007)CrossRefGoogle Scholar
  5. 5.
    Rostami, M., Koushanfar, F., Karri, R.: A primer on hardware security: models, methods, and metrics. P. IEEE 102(8), 1283–1295 (2014)Google Scholar
  6. 6.
    Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits. IEEE/ACM Design, Automation and Test in Europe, pp. 1069–1074 (2008)Google Scholar
  7. 7.
    Roy, J.A., Koushanfar, F., Markov, I.L.: Ending piracy of integrated circuits. Computer 43(10), 30–38 (2010)Google Scholar
  8. 8.
    Karri, R., Rajendran, J., Rosenfeld, K., Tehranipoor, M.: Trustworthy hardware: identifying and classifying hardware Trojans. IEEE Comput. 43(10), 39–46Google Scholar
  9. 9.
    Top 5 Most Counterfeited Parts Represent a $ 169 Billion Potential Challenge for Global Semiconductor Market. http://press.ihs.com/press-release/design-supply-chain/top-5-most-counterfeited-parts-represent-169-billion-potential-cha
  10. 10.
    DARPA. Defense Science Board (DSB) study on High Performance Microchip Supply (2005). www.acq.osd.mil/dsb/reports/ADA435563.pdf
  11. 11.
    Koushanfar, Farinaz, Hong, Inki, Potkonjak, Miodrag: Behavioral synthesis techniques for intellectual property protection. ACM Trans. Des. Autom. Electron. Syst. 10(3), 523–545 (2005)CrossRefGoogle Scholar
  12. 12.
    Caldwell, A.E., Choi, H.-J., Kahng, A.B., Mantik, S., Potkonjak, M., Qu, G., Wong, J.L.: Effective iterative techniques for fingerprinting design IP. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 23(2), 208–215 (2004)Google Scholar
  13. 13.
    Koushanfar, F., Qu, G., Potkonjak, M.: Intellectual Property Metering. Information Hiding, Workshop (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Chakraborty, R.S., Bhunia, S.: HARPOON: an obfuscation-based soc design methodology for hardware protection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 28(10), 1493–1502 (2009)Google Scholar
  15. 15.
    Intelligence Advanced Research Projects Activity. Trusted Integrated Circuits Program. https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6
  16. 16.
    Rhrmair, U., Devadas, S., Koushanfar, F.: Security Based on Physical Unclonability and Disorder. Introduction to Hardware Security and Trust, pp. 65–102 (2012)Google Scholar
  17. 17.
    Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Guajardo, Jorge, Kumar, Sandeep S., Schrijen, Geert-Jan, Tuyls, Pim: FPGA intrinsic PUFs and their use for IP protection. Cryptographic Hardware Embed. Syst. 4727, 63–80 (2007)Google Scholar
  19. 19.
    Tuyls, P., Schrijen, G.-J., Kori, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-proof hardware from protective coatings. Cryptographic Hardware Embed. Syst. 4249, 369–383 (2006)Google Scholar
  20. 20.
    Helinski, R., Acharyya, D., Plusquellic, J.: A physical unclonable function defined using power distribution system equivalent resistance variations. ACM/IEEE Design Automation Conference, pp. 676–681 (2009)Google Scholar
  21. 21.
    Helinski, R., Acharyya, D., Plusquellic, J.: Quality metric evaluation of a physical unclonable function derived from an IC’s power distribution system. ACM/IEEE Design Automation Conference, pp. 240–243 (2010)Google Scholar
  22. 22.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. ACM Conference on Computer and Communications Security, pp. 148–160 (2002)Google Scholar
  23. 23.
    Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. IEEE/ACM Design Automation Conference, pp. 9–14 (2007)Google Scholar
  24. 24.
    Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. IEEE Internationall Symposium on VLSI Circuits, pp. 176–179 (2004)Google Scholar
  25. 25.
    Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. IEEE/ACM International Conference on Computer-Aided Design, pp. 670–673 (2008)Google Scholar
  26. 26.
    Pappu, R., Recht ,B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297(5589), 2026–2030 (2002)Google Scholar
  27. 27.
    Maiti, A., Gunreddy, V., Schaumont, P.: A Systematic Method to Evaluate and Compare the Performance of Physical Unclonable Functions (2011). https://eprint.iacr.org/2011/657.pdf
  28. 28.
    Devadas, S.: Non-networked RFID PUF authentication. U.S. Patent 8 683 210, U.S. Patent Appl. 12/623 045 (2008)Google Scholar
  29. 29.
    Suh, G.E., O’Donnell, C.W., Devadas, S.: Aegis: a single-chip secure processor. IEEE Des. Test Comput. 24(6), 570–580 (2007)CrossRefGoogle Scholar
  30. 30.
    Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. ACM Conference on Computer and Communications Security, pp. 237–249 (2010)Google Scholar
  31. 31.
    Schuster, D.: Side-channel analysis of physical unclonable functions (PUFs). PhD Dissertation, Technische Universität München (2010)Google Scholar
  32. 32.
    Wei, S., Wendt, J.B., Nahapetiany, A., Potkonjak, M.: Reverse engineering and prevention techniques for physical unclonable functions using side channels. IEEE/ACM Design Automation Conference, pp. 1–6 (2014)Google Scholar
  33. 33.
    Devadas, S., Yu, MDM.: Secure and robust error correction for physical unclonable functions. IEEE Des. Test 99 (2013)Google Scholar
  34. 34.
    Paral, Z., Devadas, S.: Reliable and efficient PUF-based key generation using pattern matching. IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 128–133 (2011)Google Scholar
  35. 35.
    Yin, C.-E., Qu, G.: Improving PUF security with regression-based distiller. IEEE/ACM Design Automation Conference, pp. 1–6 (2013)Google Scholar
  36. 36.
    Nathan Beckmann and Miodrag Potkonjak. Hardware-based public-key cryptography with public physically unclonable functions. Information Hiding, pp. 206–220 (2009)Google Scholar
  37. 37.
    Rajendran, J., Rose, G.S., Karri, R., Potkonjak, M.: Nano-PPUF: a memristor-based security primitive. IEEE Computer Society Annual Symposium on VLSI, pp. 84–87 (2012)Google Scholar
  38. 38.
    Ruhrmair, U., Chen, Q., Stutzmann, M., Lugli, P., Schlichtmann, U., Csaba, G.: Towards electrical, integrated implementations of SIMPL systems. Information Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices, vol. 6033, pp. 277–292 (2010)Google Scholar
  39. 39.
    Rosenfeld, K., Gavas, E., Karri, R.: Sensor physical unclonable functions. IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 112–117Google Scholar
  40. 40.
    Cao, Y., Zalivaka, S.S., Zhang, L., Chang, C.-H., Chen, S.: CMOS image sensor based physical unclonable function for smart phone security applications. International Symposium on Integrated Circuits, pp. 392–395 (2014)Google Scholar
  41. 41.
    Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions, pp. 3–37. Towards Hardware-Intrinsic, Security (2010)Google Scholar
  42. 42.
    Council Decision 96/644/EC of 11 November 1996 on the extension of the legal protection of topographies of semiconductor products to persons from the Isle of Man (2015). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31996D0644
  43. 43.
    Law on the Circuit Layout of a Semiconductor Integrated Circuits (Act No. 43 of May 31, 1985, as last amended by Act No. 50 of June 2, 2006) (2015)Google Scholar
  44. 44.
    Malbon, J., Lawson, C., Davison, M.: A Commentary. Edward Elgar Publishing, The WTO Agreement on Trade-Related Aspects of Intellectual Property Rights (2014). ISBN 9781845424435Google Scholar
  45. 45.
    Government Printing Office. The Copyright Law of the United States and Related Laws Contained in Title 17 of the United States Code (2012). ISBN 9780160795084Google Scholar
  46. 46.
    Alkabani, Y., Koushanfar, F., Potkonjak, M.: Remote activation of ICs for piracy prevention and digital right management. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 674–677 (2007)Google Scholar
  47. 47.
    Alkabani, Y., Koushanfar, F.: Active Hardware Metering for Intellectual Property Protection and Security, pp. 291–306. USENIX, Security (2007)Google Scholar
  48. 48.
    Huang, J., Lach, J.: IC activation and user authentication for security-sensitive systems. IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 76–80 (2008)Google Scholar
  49. 49.
    Roy, J.A., Koushanfar, F., Markov, I.L.: Protecting bus-based hardware IP by secret sharing. ACM/IEEE Design Automation Conference, pp. 846–851 (2008)Google Scholar
  50. 50.
    Koushanfar, F., Qu, G.: Hardware metering. IEEE/ACM Design Automation Conference, pp. 490–493 (2001)Google Scholar
  51. 51.
    Lofstrom, K., Daasch, W.R., Taylor, D.: IC identification circuit using device mismatch. IEEE International Solid-State Circuits Conference, pp. 372–373 (2000)Google Scholar
  52. 52.
  53. 53.
    Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Watermarking techniques for intellectual property protection. IEEE/ACM Design Automation Conference, pp. 776–781 (1998)Google Scholar
  54. 54.
    Kahng, A.B., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Robust IP watermarking methodologies for physical design. IEEE/ACM Design Automation Conference, pp. 782–787 (1998)Google Scholar
  55. 55.
    Lach, J., Mangione-Smith, W.H., Potkonjak, M.: FPGA fingerprinting techniques for protecting intellectual property. IEEE Custom Integrated Circuits Conference, pp. 299–302 (1998)Google Scholar
  56. 56.
    Wolfe, G., Wong, J.L., Potkonjak, M.: Watermarking graph partitioning solutions. IEEE/ACM Design Automation Conference, pp. 486–489 (2001)Google Scholar
  57. 57.
    Alpert, C.J., Kahng, A.: Recent Directions in Netlist Partitioning. Integration, The VLSI journal (1995)MATHGoogle Scholar
  58. 58.
    Dupuis, S., Ba, P.-S., Di Natale, G., Flottes, M.L., Rouzeyre, B.: A novel hardware logic encryption technique for thwarting illegal overproduction and hardware Trojans. IEEE International On-Line Testing Symposium, pp. 49–54 (2014)Google Scholar
  59. 59.
    Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Logic encryption: a fault analysis perspective. In: Proceedings of the IEEE/ACM Design, Automation and Test in Europe, pp. 953–958 (2012)Google Scholar
  60. 60.
    Rajendran, J., Zhang, H., Zhang, C., Rose, G.S., Pino, Y., Sinanoglu, O., Karri, R.: Fault analysis-based logic encryption. IEEE Trans. Comput. 64(2), 410–424 (2015)Google Scholar
  61. 61.
    Plaza, S.M., Markov, I.L.: Solving the third-shift problem in ic piracy with test-aware logic locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(6), 961–971 (2015)Google Scholar
  62. 62.
    Chakraborty, R.S., Bhunia, S.: Security against hardware Trojan through a novel application of design obfuscation. IEEE/ACM International Conference on Computer-Aided Design, pp. 113–116 (2009)Google Scholar
  63. 63.
    Colombier, B., Bossuet, L.: Survey of hardware protection of design data for integrated circuits and intellectual properties. IET Comput. Digital Tech. 8(6), 274–287 (2014)Google Scholar
  64. 64.
    Baumgarten, A., Tyagi, A., Zambreno, J.: Preventing IC piracy using reconfigurable logic barriers. IEEE Des. Test Comput. 27(1), 66–75 (2010)CrossRefGoogle Scholar
  65. 65.
    Khaleghi, S., Da Zhao, K., Rao, W.: IC piracy prevention via design withholding and entanglement. Asia-Pacific Design Automation Conference, pp. 821–826 (2015)Google Scholar
  66. 66.
    Lee, Y.-W., Touba, N.A.: Improving logic obfuscation via logic cone analysis. IEEE Latin-American Test Symposium, pp. 1–6 (2015)Google Scholar
  67. 67.
    Contreras, G.K., Rahman, M.T., Tehranipoor, M.: Secure split-test for preventing ic piracy by uuntrusted foundry and assembly. IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 196–203 (2013)Google Scholar
  68. 68.
    Roy, J.A., Koushanfar, F., Markov, I.L.: Protecting bus-based hardware ip by secret sharing. In: Proceedings of IEEE/ACM Design Automation Conference, pp. 846–851 (2008)Google Scholar
  69. 69.
    Plaza, S.M., Markov, I.L.: Protecting Integrated Circuits from Piracy with Test-aware Logic Locking (2014)Google Scholar
  70. 70.
    Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfuscation. IEEE/ACM Design Automation Conference, pp. 83–89 (2012)Google Scholar
  71. 71.
    Subramanyan, P., Ray, S., Malik, S.: Evaluating the Security of Logic Encryption Algorithms. IEEE International Symposium on Hardware Oriented Security and Trust, pp. 137–143 (2015)Google Scholar
  72. 72.
    Chakraborty, R.S., Bhunia, S.: Hardware protection and authentication through netlist level obfuscation. IEEE/ACM International Conference on Computer-Aided Design, pp. 674–677 (2008)Google Scholar
  73. 73.
    Chakraborty, R.S., Bhunia, S.: Security against hardware trojan through a novel application of design obfuscation. IEEE/ACM International Conference on Computer-Aided Design, pp. 113–116 (2009)Google Scholar
  74. 74.
    Chakraborty, R.S., Bhunia, S.: RTL hardware ip protection using key-based control and data flow obfuscation. IEEE International Conference on VLSI Design, pp. 405–410 (2010)Google Scholar
  75. 75.
    Koushanfar, Farinaz: Provably secure active IC metering techniques for piracy avoidance and digital rights management. IEEE Trans. Inf. Forensics Secur. 7(1), 51–63 (2012)CrossRefGoogle Scholar
  76. 76.
    Jarvis, R.W., McIntyre, M.G.: Split manufacturing method for advanced semiconductor circuits. US Patent no. 7195931 (2004)Google Scholar
  77. 77.
  78. 78.
    Jagasivamani, M., Gadfort, P., Sika, M., Bajura, M., Fritze, M.: Split fabrication obfuscation: metrics and techniques. IEEE Symposium on Hardware Oriented Security and Trust (2014)Google Scholar
  79. 79.
    Hill, B., Karmazin, R., Otero, C.T.O., Tse, J., Manohar, R.: A split-foundry asynchronous FPGA. IEEE Custom Integrated Circuits Conference, pp. 1–4 (2013)Google Scholar
  80. 80.
    Valamehr, J., Sherwood, T., Kastner, R., Marangoni-Simonsen, D., Huffmire, T., Irvine, C., Levin, T.: A 3-D split manufacturing approach to trustworthy system development. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(4), 611–615 (2013)CrossRefGoogle Scholar
  81. 81.
    Vaidyanathan, K., Liu, R., Sumbul, E., Zhu, Q., Franchetti, F., Pileggi, L.: Efficient and secure intellectual property (IP) design for split fabrication. IEEE Symposium on Hardware Oriented Security and Trust (2014)Google Scholar
  82. 82.
    Naveed, A.: Sherwani. Springer Publications, Algorithms for VLSI Physical Design Automation (2002)Google Scholar
  83. 83.
    Rajendran, O., Sinanoglu, J., Karri, R.: Is split manufacturing secure? IEEE Design, Automation and Test in Europe Conference, pp. 1259–1264 (2013)Google Scholar
  84. 84.
    Vaidyanathan, K., Das, B.P., Sumbul, E., Liu, R., Pileggi, L.: Building trusted ICs using split fabrication. IEEE Symposium on Hardware Oriented Security and Trust (2014)Google Scholar
  85. 85.
    Imeson, F., Emtenan, A., Garg, S., Tripunitara, M.: Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation. USENIX Security (2013)Google Scholar
  86. 86.
    Altera. Altera Reveals Stratix 10 Innovations Enabling the Industrys Fastest and Highest Capacity FPGAs and SoCs. http://newsroom.altera.com/press-releases/nr-altera-stratix10.htm
  87. 87.
    Verayo, P.: Physical unclonable function. http://www.verayo.com/tech.php
  88. 88.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ramesh Karri
    • 1
  • Ozgur Sinanoglu
    • 2
  • Jeyavijayan Rajendran
    • 1
  1. 1.Department of Electrical and Computer EngineeringPolytechnic School of Engineering, New York UniversityBrooklynUSA
  2. 2.Department of Electrical and Computer EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUnited Arab Emirates

Personalised recommendations