Advertisement

Integrated Lead Optimization: Translational Models as We Advance Toward the Clinic

  • Bianca M. Liederer
  • Xingrong Liu
  • Simon Wong
  • Daniel R. Mudra
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 25)

Abstract

Drug discovery requires the convergence of molecular attributes including magnitude and duration of exposure, tissue distribution, target engagement, and pharmacological action. To this end, during lead optimization, discovery scientists must leverage integrated data sets and translatable models to offer projections of clinical performance and thereby make informed decisions on the merits of individual molecules. This chapter presents methodologies to predict human clearance, drug-drug interaction (DDI) risk, and penetration of the blood-brain barrier (BBB) and exposure to the central nervous system during various stages of discovery with emphasis on immediate preclinical stages. By focusing on current state and best practices of the contemporary lead optimization scientist, we discuss the use of human-derived model systems and multiparameter optimization to drive the discovery of clinical candidates with favorable human ADME/PK properties in mind. We present strategies to predict and mitigate DDIs at different stages of drug discovery and development by evaluating CYP involvement in metabolism as well as achieving an assessment of a DDI’s clinical significance. We introduce concepts related to brain penetration from the perspective of small molecule drug discovery and discuss how to effectively address BBB issues in lead optimization. Emphasis is given to creation and application of preclinical data and methodologies that provide a mechanistic understanding of drug disposition leading to translatable models to predict clinical outcomes, assess developability risk, and help address simple to complex “what-if” scenarios. Predictive models of clearance, CNS penetration, and DDIs will be presented and discussed including comprehensive case studies to highlight integrated approaches used to discover drug candidates suitable for the safe exploration of clinical hypotheses.

Keywords

Drug-drug interaction Human clearance Brain penetration Translational models Preclinical lead optimization 

References

  1. 1.
    Prentis RA, Lis Y, Walker R. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (196401985). Br J Clin Pharmacol. 1988;25:387–96.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51.PubMedCrossRefGoogle Scholar
  5. 5.
    DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151–85.PubMedCrossRefGoogle Scholar
  6. 6.
    DiMasi JA, Hansen RW, Grabowski HG, et al. Cost of innovation in the pharmaceutical industry. J Health Econ. 1991;10(2):107–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Herper M. The cost of creating a new drug now $5 billion, pushing big pharma to change. Forbes/Pharma & Healthcare; (2013). http://www.forbes.com/sites/matthewherper/2013/08/11/the-cost-of-inventing-a-new-drug-98-companies-ranked/#43c395461628
  8. 8.
    Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Jamei M, Turner D, Yang J, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009b;11(2):225–37.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yu LX, Lipka E, Crison JR, et al. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev. 1996;19:359–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Parkinson A, Ogilvie BW, Buckley DB, et al. Biotransformation of Xenobiotics. In: Klassen CD, editor. Casarett and Doul-toxicology. New York City, NY: McGraw Hill; 2013.Google Scholar
  12. 12.
    Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism based prediction of volume of distribution. J Pharm Sci. 2001;91(1):129–56.CrossRefGoogle Scholar
  13. 13.
    Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Sager JE, Yu J, Ragueneau-Majlessi I, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bohnert T, Patel A, Templeton I, et al. Evaluation of a new molecular entity as a victim of metabolic drug-drug interactions - an industry perspective. Drug Metab Dispos. 2016;44(8):1399–423.PubMedCrossRefGoogle Scholar
  16. 16.
    Hochman J, Tang C, Prueksaritanont T. Drug-drug interactions related to altered absorption and plasma protein binding: theoretical and regulatory considerations, and an industry perspective. J Pharm Sci. 2015;104(3):916–29.PubMedCrossRefGoogle Scholar
  17. 17.
    Prueksaritanont T, Chu X, Gibson C, et al. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J. 2013;15(3):629–45.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol. 2011;24(9):1420–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith D, Schmid E, Jones B. Do drug metabolism and pharmacokinetic departments make any contribution to drug discovery? Clin Pharm. 2002;41(13):1005–19.CrossRefGoogle Scholar
  20. 20.
    Stella VJ. A case for prodrugs. In: Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW, editors. Prodrugs: challenges and rewards. New York, NY: Springer; 2007. p. 3–33.CrossRefGoogle Scholar
  21. 21.
    Borchardt RT. Educational and communication issues related to profiling compounds for their drug-like properties. In: Testa B, Kramer SD, Wunderli-Allenspach H, Folkers G, editors. Pharmacokinetic profiling in drug research: biological, physicochemical and computational strategies. Zurich: VHCA Verlag Helvetica Chimica Acta; 2006. p. 461–5.Google Scholar
  22. 22.
    Borchardt RT. Drug design with ADME in mind; recent paradigm shift in drug discovery. Paper presented at the Solvay conference entitled toward drugs of the future and key issues in lead finding and lead optimization; 2008.Google Scholar
  23. 23.
    Boxenbaum H. Interspecies variation in liver weight, hepatic blood flow and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin. J Pharm Biopharm. 1980;8(2):165–76.CrossRefGoogle Scholar
  24. 24.
    Mordenti J. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci. 1986;75(11):1028–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Ring BJ, Chien JY, Adkison KK, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative assessment of prediction methods of human clearance. J Pharm Sci. 2011;100(10):4090–110.PubMedCrossRefGoogle Scholar
  26. 26.
    Tang H, Mayersohn M. A mathematical description of the functionality of correction factors used in allometry for predicting human drug clearance. Drug Metab Dispos. 2005a;33(9):1294–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Tang H, Mayersohn M. A novel model for prediction of human drug clearance by allometric scaling. Drug Metab Dispos. 2005b;33(9):1297–303.PubMedCrossRefGoogle Scholar
  28. 28.
    Tang H, Mayersohn M. A global examination of allometric scaling for predicting human drug clearance and the prediction of large vertical allometry. J Pharm Sci. 2006;95(8):1783–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Endres CJ, Endres MG, Unadkat JD. Interplay of drug metabolism and transport: a real phenomenon or an artifact of the site of measurement? Mol Pharm. 2009;6(6):1756–65.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jones HM, Barton HA, Lai Y, et al. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos. 2012;40(5):1007–17.PubMedCrossRefGoogle Scholar
  31. 31.
    Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lave T, Dupin S, Schmitt C, et al. The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humans. Pharm Res. 1997b;14(2):152–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu L, Pang KS. An integrated approach to model hepatic drug clearance. Eur J Pharm Sci. 2006;29(3–4):215–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Pang KS, Rowland M. Hepatic clearance of drugs: I. Theoretical considerations of a "well-stirred" model and a "parallel tube" model. Influence of hepatic blood flow, plasma and blood cell binding and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacol Biopharm. 1977;5(6):625–53.CrossRefGoogle Scholar
  35. 35.
    Riede J, Poller B, Umehara K, et al. New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsome data. Eur J Pharm Sci. 2016;86:96–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Thummel KE, Kunze KL, Shen DD. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev. 1997;27:99–127.PubMedCrossRefGoogle Scholar
  37. 37.
    Adolph EF. Quantitative relations in the physiological constitutions of mammals. Science. 1949;109:579–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Huxley JS. Problems of relative growth. London: Methusen and Co. Ltd.; 1932.Google Scholar
  39. 39.
    Snell GD. Inheritence in the house mouse: the linkage relations of short-ear, hairless and naked. Genetics. 1931;16:42–74.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Thompson D. Growth and form. Cambridge: Cambridge University Press; 1917.CrossRefGoogle Scholar
  41. 41.
    Mahmood I, Boxenbaum H. Vertical allometry: fact or fiction? Regul Toxicol Pharmacol. 2014;68(3):468–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Feng MR, Lou X, Brown RR, et al. Allometric pharmacokinetic scaling: towards the prediction of human oral pharmacokinetics. Pharm Res. 2000;17(4):410–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18:377–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Boxenbaum H, Ronfeld R. Interspecies pharmacokinetic scaling and the Dedrick plots. Am J Phys. 1983;245(6):R768–75.Google Scholar
  45. 45.
    Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10(2):201–27.PubMedCrossRefGoogle Scholar
  46. 46.
    Dedrick RL, Bischoff KB, Zaharko DS. Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother. 1970;54(2):95–101.Google Scholar
  47. 47.
    Mitteroecker P, Gunz P, Bernhard M, et al. Comparison of cranial ontogenetic trajectories among great apes and humans. J Hum Evol. 2004;46(6):679–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Penin X, Berge C, Baylac M. Ontogenetic study of the skull in modern humans and the common chimpanzees: neotenic hypothesis reconsidered with a tridimensional procrustes analysis. Am J Phys Anthropol. 2002;118(1):50–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Yates FE, Kugler PN. Similarity principles and intrinsic geometries: contrasting approaches to interspecies scaling. J Pharm Sci. 1986;75(11):1019–27.PubMedCrossRefGoogle Scholar
  50. 50.
    Mahmood I, Balian JD. Interspecies scaling: predicting pharmacokinetic parameters of antiepileptic drugs in humans from animals with special emphasis on clearance. J Pharm Sci. 1996;85(4):411–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Nagilla R, Ward KW. A comprehensive analysis of the role of correction factors in the allometric predictivity of clearance from rat, dog, and monkey to humans. J Pharm Sci. 2004;93(10):2522–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog and monkey to humans. I. Clearance. Drug Metab Dispos. 2004;32(6):603–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Lave T, Dupin S, Schmitt C, et al. Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: application to 10 extensively metabolized drugs. J Pharm Sci. 1997a;86(5):584–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Camenisch G, Riede J, Kunze A, et al. The extended clearance model and its use for the interpretation of hepatobiliary elimination data. Admet Dmpk. 2015;3(1):1–14.CrossRefGoogle Scholar
  55. 55.
    Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Mizuno N, Niwa T, Yotsumoto Y, et al. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev. 2003;55(3):425–61.PubMedCrossRefGoogle Scholar
  58. 58.
    Pryde DC, Dalvie D, Hu Q, et al. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem. 2010;53(24):8441–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Di L, Feng B, Goosen TC, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013;41(12):1975–93.PubMedCrossRefGoogle Scholar
  61. 61.
    Varma MV, Steyn SJ, Allerton C, et al. Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res. 2015;32(12):3785–802.PubMedCrossRefGoogle Scholar
  62. 62.
    Rane A, Wilkinson GR, Shand DG. Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. J Pharmacol Exp Ther. 1977;200(2):420–4.PubMedGoogle Scholar
  63. 63.
    Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.PubMedCrossRefGoogle Scholar
  64. 64.
    Oprea TI, Davis AM, Teague SJ, et al. Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci. 2001;41:1308–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Bell LC, Wang J. Probe ADME and test hypotheses: a PATH beyond clearance in vitro-in vivo correlations in early drug discovery. Expert Opin Drug Metab Toxicol. 2012;8(9):1131–55.PubMedCrossRefGoogle Scholar
  66. 66.
    Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–39.PubMedCrossRefGoogle Scholar
  67. 67.
    van de Waterbeemd H, Smith D, Jones B. Lipophilicity in PK design: methyl, ethyl, futile. J Comp Aid Mol Des. 2001;15:273–86.CrossRefGoogle Scholar
  68. 68.
    Chiba M, Jin L, Neway W, et al. P450 interaction with HIV protease inhibitors: relationship between metabolic stability, inhibitor potency and P450 binding spectra. Drug Metab Dispos. 2001;29(1):1–3.PubMedCrossRefGoogle Scholar
  69. 69.
    Lam PYS, Clark CG, Li R, et al. Structure-based design of novel guanidine/benzamidine mimics: potent and orally bioavailable factor Xa inhibitors as novel anticoagulants. J Med Chem. 2003;46(21):4405–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Pinto DJ, Orwat MJ, Wang S, et al. Discovery of 1-[3-(aminomethyl)phenyl]-N-[3-fluor-2'-(methylsulfonyl)-[1,1′-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem. 2001;44(566–578)Google Scholar
  71. 71.
    Wong PC, Pinto DJ, Knabb RM. Nonpeptide factor Xa inhibitors: DPC423, a highly potent and orally bioavailable pyrazole antithrombotic agent. Cardiovasc Drug Rev. 2002;20(2):137–52.PubMedCrossRefGoogle Scholar
  72. 72.
    Hallifax D, Houston JB. Evaluation of hepatic clearance prediction using in vitro data: emphasis on fraction unbound in plasma and drug ionisation using a database of 107 drugs. J Pharm Sci. 2012;101(8):2645–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Kilford PJ, Stringer R, Sohal B, et al. Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos. 2009;37(1):82–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Sassard J, Pozet N, McAinsh J, et al. Pharmacokinetics of atenolol in patients with renal impairment. Eur J Clin Pharm. 1977;12:175–80.CrossRefGoogle Scholar
  75. 75.
    Weiss YA, Safar ME, Lehner JP, et al. (+)-propranolol clearance, an estimation of hepatic blood flow in man. Br J Clin Pharmacol. 1978;5:457–60.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Elsby R, Hilgendorf C, Fenner K. Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther. 2012;92(5):584–98.PubMedCrossRefGoogle Scholar
  77. 77.
    Hirota T, Ieiri I. Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol. 2015;11(9):1435–47.PubMedCrossRefGoogle Scholar
  78. 78.
    Hu M, Tomlinson B. Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin Drug Metab Toxicol. 2014;10(1):51–65.PubMedCrossRefGoogle Scholar
  79. 79.
    Vildhede A, Mateus A, Khan EK, et al. Mechanistic modeling of pitavastatin disposition in sandwich-cultured hepatocytes: a proteomics-informed bottom-up approach. Drug Metab Dispos. 2016;44:505–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Iwatsubo T, Hirota N, Ooie T, et al. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther. 1997;73(2):147–71.PubMedCrossRefGoogle Scholar
  81. 81.
    Obach RS, Baxter JG, Liston TE, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283(1):46–58.PubMedGoogle Scholar
  82. 82.
    Hutzler JM, Yang YS, Albaugh D, et al. Characterization of aldehyde oxidase enzyme activity in cryopreserved human hepatocytes. Drug Metab Dispos. 2012;40(2):267–75.PubMedCrossRefGoogle Scholar
  83. 83.
    De Buck SS, Sinha VK, Fenu LA, et al. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispos. 2007;35(10):1766–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Hallifax D, Rawden HC, Hakooz N, et al. Prediction of metabolic clearance using cryopreserved human hepatocytes: kinetic characteristics for five benzodiazepines. Drug Metab Dispos. 2005;33(12):1852–8.PubMedGoogle Scholar
  85. 85.
    Houston JB. Prediction of human pharmacokinetics in 2013 and beyond. Drug Metab Dispos. 2013;41(12):1973–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Kamel A, Colizza K, Gunduz M, et al. In vitro-in vivo correlation for intrinsic clearance for CP-409,092 and sumatriptan: a case study to predict the in vivo clearance for compounds metabolized by monoamine oxidase. Xenobiotica. 2012;42(4):355–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Nishimuta H, Houston JB, Galetin A. Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: implications for in vitro-in vivo extrapolation of clearance of prodrugs. Drug Metab Dispos. 2014;42(9):1522–31.PubMedCrossRefGoogle Scholar
  88. 88.
    Sawant Basak A, Byon W, Tseng-Lovering E, et al. Metabolism and clinical pharmacokinetics of 2-methyl-n-(2′-(pyrrolidinyl-1-ylsulfonyl)-n-[1,1′-biphenyl]-4-yl)propran-1-amine: insights into monoamine oxidase- and CYP-mediated disposition by integration of in vitro ADME tools. Xenobiotica. 2014;44(5):438–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Shibata Y, Kuze J, Chiba M. Utility of cryopreserved hepatocytes suspended in serum to predict hepatic clearance in dogs and monkeys. Drug Metab Pharmacokinet. 2014;29(2):168–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Zientek M, Jiang Y, Youdim K, et al. In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos. 2010a;38(8):1322–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Paine SW, Menochet K, Denton R, et al. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos. 2011;39(6):1008–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Nishimuta H, Sato K, Mizuki Y, et al. Prediction of the intestinal first-pass metabolism of CYP3A substrates in humans using cynomolgus monkeys. Drug Metab Dispos. 2010;38(11):1967–75.PubMedCrossRefGoogle Scholar
  93. 93.
    Cao X, Gibbs ST, Fang L, et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–86.PubMedCrossRefGoogle Scholar
  94. 94.
    Gertz M, Harrison A, Houston JB, et al. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.PubMedCrossRefGoogle Scholar
  95. 95.
    Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med. 1976;294(20):1104–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Howard P, Bixler TJ, Gill B. Cyclosporine-rifampin drug interaction. Drug Intell Clin Pharm. 1985;19(10):763–4.PubMedGoogle Scholar
  97. 97.
    Lesser PB, Vietti MM, Clark WD. Lethal enhancement of therapeutic doses of acetaminophen by alcohol. Dig Dis Sci. 1986;31(1):103–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Fahmi OA, Ripp SL. Evaluation of models for predicting drug-drug interactions due to induction. Expert Opin Drug Metab Toxicol. 2010;6(11):1399–416.PubMedCrossRefGoogle Scholar
  99. 99.
    McGinnity DF, Zhang G, Kenny JR, et al. Evaluation of multiple in vitro systems for assessment of CYP3A4 induction in drug discovery: human hepatocytes, pregnane X receptor reporter gene, and Fa2N-4 and HepaRG cells. Drug Metab Dispos. 2009;37(6):1259–68.PubMedCrossRefGoogle Scholar
  100. 100.
    Sinz M, Wallace G, Sahi J. Current industrial practices in assessing CYP450 enzyme induction: preclinical and clinical. AAPS J. 2008;10(2):391–400.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    LeCluyse EL. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci. 2001;13(4):343–68.PubMedCrossRefGoogle Scholar
  102. 102.
    Halladay JS, Wong S, Khojasteh SC, et al. An ‘all-inclusive’ 96-well cytochrome P450 induction method: measuring enzyme activity, mRNA levels, protein levels, and cytotoxicity from one well using cryopreserved human hepatocytes. J Pharmacol Toxicol Methods. 2012;66(3):270–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Almond LM, Mukadam S, Gardner I, et al. Prediction of drug-drug interactions arising from CYP3A induction using a physiologically based dynamic model. Drug Metab Dispos. 2016;44(6):821–32.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Fahmi OA, Boldt S, Kish M, et al. Prediction of drug-drug interactions from in vitro induction data: application of the relative induction score approach using cryopreserved human hepatocytes. Drug Metab Dispos. 2008;36(9):1971–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Fontana E, Dansette PM, Poli SM. Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity. Curr Drug Metab. 2005;6(5):413–54.PubMedCrossRefGoogle Scholar
  108. 108.
    Kalgutkar AS, Obach RS, Maurer TS. Mechanism-based inactivation of cytochrome P450 enzymes: chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. Curr Drug Metab. 2007;8(5):407–47.PubMedCrossRefGoogle Scholar
  109. 109.
    Orr ST, Ripp SL, Ballard TE, et al. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J Med Chem. 2012;55(11):4896–933.PubMedCrossRefGoogle Scholar
  110. 110.
    Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000;28(2):125–30.PubMedGoogle Scholar
  111. 111.
    Jones DR, Gorski JC, Hamman MA, et al. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther. 1999;290(3):1116–25.PubMedGoogle Scholar
  112. 112.
    Levine M, Bellward GD. Effect of cimetidine on hepatic cytochrome P450: evidence for formation of a metabolite-intermediate complex. Drug Metab Dispos. 1995;23(12):1407–11.PubMedGoogle Scholar
  113. 113.
    Pessayre D, Larrey D, Vitaux J, et al. Formation of an inactive cytochrome P-450 Fe(II)-metabolite complex after administration of troleandomycin in humans. Biochem Pharmacol. 1982;31(9):1699–704.PubMedCrossRefGoogle Scholar
  114. 114.
    Franklin R. Inhibition of mixed-function oxidations by substrates forming reduced cytochrome P-450 metabolic-intermediate complexes. Pharmacol Ther. 1977;2:227–45.Google Scholar
  115. 115.
    Franklin MR. Cytochrome P450 metabolic intermediate complexes from macrolide antibiotics and related compounds. Methods Enzymol. 1991;206:559–73.PubMedCrossRefGoogle Scholar
  116. 116.
    Murray M. Mechanisms of inhibitory and regulatory effects of methylenedioxyphenyl compounds on cytochrome P450-dependent drug oxidation. Curr Drug Metab. 2000;1(1):67–84.PubMedCrossRefGoogle Scholar
  117. 117.
    Periti P, Mazzei T, Mini E, et al. Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet. 1992;23(2):106–31.PubMedCrossRefGoogle Scholar
  118. 118.
    Marks GS. The effect of chemicals on hepatic heme biosynthesis. Handb Exp Pharmacol. 1978;201Google Scholar
  119. 119.
    Grab LA, Swanson BA, Ortiz de Montellano PR. Cytochrome P-450 inactivation by 3-alkylsydnones. Mechanistic implications of N-alkyl and N-alkenyl heme adduct formation. Biochemistry. 1988;27(13):4805–14.PubMedCrossRefGoogle Scholar
  120. 120.
    Ortiz de Montellano PR, Mathews JM. Autocatalytic alkylation of the cytochrome P-450 prosthetic haem group by 1-aminobenzotriazole. Isolation of an NN-bridged benzyne-protoporphyrin IX adduct. Biochem J. 1981;195(3):761–4.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Linder CD, Renaud NA, Hutzler JM. Is 1-aminobenzotriazole an appropriate in vitro tool as a nonspecific cytochrome P450 inactivator? Drug Metab Dispos. 2009;37(1):10–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Lightning LK, Trager WF. Characterization of covalent adducts to intact cytochrome P450s by mass spectrometry. Methods Enzymol. 2002;357:296–300.PubMedCrossRefGoogle Scholar
  123. 123.
    Henne KR, Tran TB, VandenBrink BM, et al. Sequential metabolism of AMG 487, a novel CXCR3 antagonist, results in formation of quinone reactive metabolites that covalently modify CYP3A4 Cys239 and cause time-dependent inhibition of the enzyme. Drug Metab Dispos. 2012;40(7):1429–40.PubMedCrossRefGoogle Scholar
  124. 124.
    Kalgutkar AS, Vaz AD, Lame ME, et al. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab Dispos. 2005;33(2):243–53.PubMedCrossRefGoogle Scholar
  125. 125.
    Filppula AM, Neuvonen PJ, Backman JT. In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors. Drug Metab Dispos. 2014;42(7):1202–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Dansette PM, Libraire J, Bertho G, et al. Metabolic oxidative cleavage of thioesters: evidence for the formation of sulfenic acid intermediates in the bioactivation of the antithrombotic prodrugs ticlopidine and clopidogrel. Chem Res Toxicol. 2009;22(2):369–73.PubMedCrossRefGoogle Scholar
  127. 127.
    Ekins S, de Groot MJ, Jones JP. Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab Dispos. 2001;29(7):936–44.PubMedGoogle Scholar
  128. 128.
    Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008;51(4):817–34.PubMedCrossRefGoogle Scholar
  129. 129.
    Westaway SM, Brown SL, Fell SC, et al. Discovery of N-(3-fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acetyl]-4-pi peridinamine (GSK962040), the first small molecule motilin receptor agonist clinical candidate. J Med Chem. 2009;52(4):1180–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Zhao Z, Leister WH, O'Brien JA, et al. Discovery of N-{[1-(propylsulfonyl)-4-pyridin-2-ylpiperidin-4-yl]methyl}benzamides as novel, selective and potent GlyT1 inhibitors. Bioorg Med Chem Lett. 2009;19(5):1488–91.PubMedCrossRefGoogle Scholar
  131. 131.
    Lin LS, Lanza T, Jewell JP, et al. Discovery of N-{N-[(3-cyanophenyl)sulfonyl]-4(R)-cyclobutylamino-(L)-prolyl}-4-[(3′,5′-dichlor oisonicotinoyl) amino]-(L)-phenylalanine (MK-0668), an extremely potent and orally active antagonist of very late antigen-4. J Med Chem. 2009;52(11):3449–52.PubMedCrossRefGoogle Scholar
  132. 132.
    Johnson MG, Liu JJ, Li AR, et al. Solving time-dependent CYP3A4 inhibition for a series of indole-phenylacetic acid dual antagonists of the PGD(2) receptors CRTH2 and DP. Bioorg Med Chem Lett. 2014;24(13):2877–80.PubMedCrossRefGoogle Scholar
  133. 133.
    Wong SG, Fan PW, Subramanian R, et al. Bioactivation of a novel 2-methylindole-containing dual chemoattractant receptor-homologous molecule expressed on T-helper type-2 cells/D-prostanoid receptor antagonist leads to mechanism-based CYP3A inactivation: glutathione adduct characterization and prediction of in vivo drug-drug interaction. Drug Metab Dispos. 2010;38(5):841–50.PubMedCrossRefGoogle Scholar
  134. 134.
    Bloomer J, Derimanov G, Dumont E, et al. Optimizing the in vitro and clinical assessment of drug interaction risk by understanding co-medications in patient populations. Expert Opin Drug Metab Toxicol. 2013;9(6):737–51.PubMedCrossRefGoogle Scholar
  135. 135.
    Gao F, Johnson DL, Ekins S, et al. Optimizing higher throughput methods to assess drug-drug interactions for CYP1A2, CYP2C9, CYP2C19, CYP2D6, rCYP2D6, and CYP3A4 in vitro using a single point IC(50). J Biomol Screen. 2002;7(4):373–82.PubMedCrossRefGoogle Scholar
  136. 136.
    Berry LM, Zhao Z. An examination of IC50 and IC50-shift experiments in assessing time-dependent inhibition of CYP3A4, CYP2D6 and CYP2C9 in human liver microsomes. Drug Metab Lett. 2008;2(1):51–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Venkatakrishnan K, Obach RS, Rostami-Hodjegan A. Mechanism-based inactivation of human cytochrome P450 enzymes: strategies for diagnosis and drug-drug interaction risk assessment. Xenobiotica. 2007;37(10–11):1225–56.PubMedCrossRefGoogle Scholar
  138. 138.
    Obach RS, Walsky RL, Venkatakrishnan K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions. Drug Metab Dispos. 2007;35(2):246–55.PubMedCrossRefGoogle Scholar
  139. 139.
    Zimmerlin A, Trunzer M, Faller B. CYP3A time-dependent inhibition risk assessment validated with 400 reference drugs. Drug Metab Dispos. 2011;39(6):1039–46.PubMedCrossRefGoogle Scholar
  140. 140.
    Stresser DM, Mao J, Kenny JR, et al. Exploring concepts of in vitro time-dependent CYP inhibition assays. Expert Opin Drug Metab Toxicol. 2014;10(2):157–74.PubMedCrossRefGoogle Scholar
  141. 141.
    Parkinson A, Kazmi F, Buckley DB, et al. An evaluation of the dilution method for identifying metabolism-dependent inhibitors of cytochrome p450 enzymes. Drug Metab Dispos. 2011;39(8):1370–87.PubMedCrossRefGoogle Scholar
  142. 142.
    Mukadam S, Tay S, Tran D, et al. Evaluation of time-dependent cytochrome p450 inhibition in a high-throughput, automated assay: introducing a novel area under the curve shift approach. Drug Metab Lett. 2012;6(1):43–53.PubMedCrossRefGoogle Scholar
  143. 143.
    Li P, Lu C, Balani SK, et al. A refined cytochrome P540 IC(5)(0) shift assay for reliably identifying CYP3A time-dependent inhibitors. Drug Metab Dispos. 2011;39(6):1054–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Atkinson A, Kenny JR, Grime K. Automated assessment of time-dependent inhibition of human cytochrome P450 enzymes using liquid chromatography-tandem mass spectrometry analysis. Drug Metab Dispos. 2005;33(11):1637–47.PubMedCrossRefGoogle Scholar
  145. 145.
    Wong SG, Lee M, Wong BK. Single concentration loss of activity assay provides an improved assessment of drug-drug interaction risk compared to IC50-shift. Xenobiotica. 2016;46(11):953–66.PubMedCrossRefGoogle Scholar
  146. 146.
    Dahlinger D, Duechting S, Nuecken D, et al. Development and validation of an in vitro, seven-in-one human cytochrome P450 assay for evaluation of both direct and time-dependent inhibition. J Pharmacol Toxicol Methods. 2016;77:66–75.PubMedCrossRefGoogle Scholar
  147. 147.
    Zientek M, Stoner C, Ayscue R, et al. Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem Res Toxicol. 2010b;23(3):664–76.PubMedCrossRefGoogle Scholar
  148. 148.
    Riley RJ, Wilson CE. Cytochrome P450 time-dependent inhibition and induction: advances in assays, risk analysis and modelling. Expert Opin Drug Metab Toxicol. 2015;11(4):557–72.PubMedCrossRefGoogle Scholar
  149. 149.
    Tang W, Stearns RA, Wang RW, et al. Assessing and minimizing time-dependent inhibition of cytochrome P450 3A in drug discovery: a case study with melanocortin-4 receptor agonists. Xenobiotica. 2008;38(11):1437–51.PubMedCrossRefGoogle Scholar
  150. 150.
    Brandt RB, Laux JE, Yates SW. Calculation of inhibitor Ki and inhibitor type from the concentration of inhibitor for 50% inhibition for Michaelis-Menten enzymes. Biochem Med Metab Biol. 1987;37(3):344–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099–108.PubMedCrossRefGoogle Scholar
  152. 152.
    Haupt LJ, Kazmi F, Ogilvie BW, et al. The reliability of estimating Ki values for direct, reversible inhibition of cytochrome P450 enzymes from corresponding IC50 values: a retrospective analysis of 343 experiments. Drug Metab Dispos. 2015;43(11):1744–50.PubMedCrossRefGoogle Scholar
  153. 153.
    Silverman RB. Mechanism-based enzyme inactivators. Methods Enzymol. 1995;249:240–83.PubMedCrossRefGoogle Scholar
  154. 154.
    Ghanbari F, Rowland-Yeo K, Bloomer JC, et al. A critical evaluation of the experimental design of studies of mechanism based enzyme inhibition, with implications for in vitro-in vivo extrapolation. Curr Drug Metab. 2006;7(3):315–34.PubMedCrossRefGoogle Scholar
  155. 155.
    Yang J, Jamei M, Yeo KR, et al. Kinetic values for mechanism-based enzyme inhibition: assessing the bias introduced by the conventional experimental protocol. Eur J Pharm Sci. 2005;26(3–4):334–40.PubMedCrossRefGoogle Scholar
  156. 156.
    Grimm SW, Einolf HJ, Hall SD, et al. The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: a perspective of the pharmaceutical research and manufacturers of America. Drug Metab Dispos. 2009;37(7):1355–70.PubMedCrossRefGoogle Scholar
  157. 157.
    Burt HJ, Pertinez H, Sall C, et al. A progress curve mechanistic modeling approach for assessing time-dependent inhibition of CYP3A4. Drug Metab Dispos. 2012;40(9):1658–67.PubMedCrossRefGoogle Scholar
  158. 158.
    Fairman DA, Collins C, Chapple S. Progress curve analysis of CYP1A2 inhibition: a more informative approach to the assessment of mechanism-based inactivation? Drug Metab Dispos. 2007;35(12):2159–65.PubMedCrossRefGoogle Scholar
  159. 159.
    Nagar S, Jones JP, Korzekwa K. A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations. Drug Metab Dispos. 2014;42(9):1575–86.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Korzekwa K, Tweedie D, Argikar UA, et al. A numerical method for analysis of in vitro time-dependent inhibition data. Part 2. Application to experimental data. Drug Metab Dispos. 2014;42(9):1587–95.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Mayhew BS, Jones DR, Hall SD. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos. 2000;28(9):1031–7.PubMedGoogle Scholar
  162. 162.
    Wang YH, Jones DR, Hall SD. Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab Dispos. 2004;32(2):259–66.PubMedCrossRefGoogle Scholar
  163. 163.
    Fahmi OA, Hurst S, Plowchalk D, et al. Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab Dispos. 2009;37(8):1658–66.PubMedCrossRefGoogle Scholar
  164. 164.
    Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, et al. Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Wong SG. Prediction of drug-drug interactions arising from mechanism-based inactivation: key input parameters and impact on risk assessment. Curr Drug Metab. 2011;12(9):871–90.PubMedCrossRefGoogle Scholar
  166. 166.
    Vieira ML, Kirby B, Ragueneau-Majlessi I, et al. Evaluation of various static in vitro-in vivo extrapolation models for risk assessment of the CYP3A inhibition potential of an investigational drug. Clin Pharmacol Ther. 2014;95(2):189–98.PubMedCrossRefGoogle Scholar
  167. 167.
    Kenny JR, Mukadam S, Zhang C, et al. Drug-drug interaction potential of marketed oncology drugs: in vitro assessment of time-dependent cytochrome P450 inhibition, reactive metabolite formation and drug-drug interaction prediction. Pharm Res. 2012;29(7):1960–76.PubMedCrossRefGoogle Scholar
  168. 168.
    Mao J, Tay S, Khojasteh CS, et al. Evaluation of time dependent inhibition assays for marketed oncology drugs: comparison of human hepatocytes and liver microsomes in the presence and absence of human plasma. Pharm Res. 2016;33(5):1204–19.PubMedCrossRefGoogle Scholar
  169. 169.
    Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73.PubMedCrossRefGoogle Scholar
  170. 170.
    Jamei M, Marciniak S, Feng K, et al. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009a;5(2):211–23.PubMedCrossRefGoogle Scholar
  171. 171.
    Jones HM, Chen Y, Gibson C, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.PubMedCrossRefGoogle Scholar
  172. 172.
    Wang YH. Confidence assessment of the Simcyp time-based approach and a static mathematical model in predicting clinical drug-drug interactions for mechanism-based CYP3A inhibitors. Drug Metab Dispos. 2010;38(7):1094–104.PubMedCrossRefGoogle Scholar
  173. 173.
    Einolf HJ. Comparison of different approaches to predict metabolic drug-drug interactions. Xenobiotica. 2007;37(10–11):1257–94.PubMedGoogle Scholar
  174. 174.
    Burt T, Yoshida K, Lappin G, et al. Microdosing and other phase 0 clinical trials: facilitating translation in drug development. Clin Transl Sci. 2016;9(2):74–88.PubMedCrossRefGoogle Scholar
  175. 175.
    Svendsen P, El-Galaly TC, Dybkaer K, et al. The application of human phase 0 microdosing trials: a systematic review and perspectives. Leuk Lymphoma. 2016b;57(6):1281–90.PubMedCrossRefGoogle Scholar
  176. 176.
    Croft M, Keely B, Morris I, et al. Predicting drug candidate victims of drug-drug interactions, using microdosing. Clin Pharmacokinet. 2012;51(4):237–46.PubMedCrossRefGoogle Scholar
  177. 177.
    Maeda K, Ikeda Y, Fujita T, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011;90(4):575–81.PubMedCrossRefGoogle Scholar
  178. 178.
    Ieiri I, Doi Y, Maeda K, et al. Microdosing clinical study: pharmacokinetic, pharmacogenomic (SLCO2B1), and interaction (grapefruit juice) profiles of celiprolol following the oral microdose and therapeutic dose. J Clin Pharmacol. 2012;52(7):1078–89.PubMedCrossRefGoogle Scholar
  179. 179.
    Kusuhara H, Ito S, Kumagai Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89(6):837–44.PubMedCrossRefGoogle Scholar
  180. 180.
    Ings RM. Microdosing: a valuable tool for accelerating drug development and the role of bioanalytical methods in meeting the challenge. Bioanalysis. 2009;1(7):1293–305.PubMedCrossRefGoogle Scholar
  181. 181.
    Svendsen P, El-Galaly TC, Dybkaer K, et al. The application of human phase 0 microdosing trials: a systematic review and perspectives. Leuk Lymphoma. 2016a;57(6):1281–90.PubMedCrossRefGoogle Scholar
  182. 182.
    Maeda K, Sugiyama Y. Novel strategies for microdose studies using non-radiolabeled compounds. Adv Drug Deliv Rev. 2011;63(7):532–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Harrison A, Gardner I, Hay T, et al. Case studies addressing human pharmacokinetic uncertainty using a combination of pharmacokinetic simulation and alternative first in human paradigms. Xenobiotica. 2012;42(1):57–74.PubMedCrossRefGoogle Scholar
  184. 184.
    Sun L, Li H, Willson K, et al. Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial. Anal Chem. 2012;84(20):8614–21.PubMedCrossRefGoogle Scholar
  185. 185.
    Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton, FL: CRC Press, Inc.; 1995.Google Scholar
  186. 186.
    Liu X, Chen C. Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel. 2005;8(4):505–12.PubMedGoogle Scholar
  187. 187.
    Liu X, Smith BJ, Chen C, et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther. 2005;313(3):1254–62.PubMedCrossRefGoogle Scholar
  188. 188.
    Syvanen S, Xie R, Sahin S, et al. Pharmacokinetic consequences of active drug efflux at the blood-brain barrier. Pharm Res. 2006;23(4):705–17.PubMedCrossRefGoogle Scholar
  189. 189.
    Hammarlund-Udenaes M, Paalzow LK, de Lange EC. Drug equilibration across the blood-brain barrier—pharmacokinetic considerations based on the microdialysis method. Pharm Res. 1997;14(2):128–34.PubMedCrossRefGoogle Scholar
  190. 190.
    Liu X, Chen C, Smith BJ. Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther. 2008;325(2):349–56.PubMedCrossRefGoogle Scholar
  191. 191.
    Cserr HF, Patlak CS. Secretion and bulk flow of interstitial fluid. Physiol Pharmacol Blood Brain Barrier. 1993:246–53.Google Scholar
  192. 192.
    Hansen DK, Scott DO, Otis KW, et al. Comparison of in vitro BBMEC permeability and in vivo CNS uptake by microdialysis sampling. J Pharm Biomed Anal. 2002;27(6):945–58.PubMedCrossRefGoogle Scholar
  193. 193.
    El Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol (Noisy-le-Grand). 1999;45(1):15–23.Google Scholar
  194. 194.
    Fang J. Metabolism of clozapine by rat brain: the role of flavin-containing monooxygenase (FMO) and cytochrome P450 enzymes. Eur J Drug Metab Pharmacokinet. 2000;25(2):109–14.PubMedCrossRefGoogle Scholar
  195. 195.
    Gervasini G, Carrillo JA, Benitez J. Potential role of cerebral cytochrome P450 in clinical pharmacokinetics: modulation by endogenous compounds. Clin Pharmacokinet. 2004;43(11):693–706.PubMedCrossRefGoogle Scholar
  196. 196.
    Strazielle N, Khuth ST, Ghersi EJF. Detoxification systems, passive and specific transport for drugs at the blood-CSF barrier in normal and pathological situations. Adv Drug Deliv Rev. 2004;56(12):1717–40.PubMedCrossRefGoogle Scholar
  197. 197.
    Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx. 2005;2(1):73–85.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Schinkel A, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.PubMedCrossRefGoogle Scholar
  199. 199.
    Yousif S, Marie-Claire C, Roux F, et al. Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Res. 2007;1134(1):1–11.PubMedCrossRefGoogle Scholar
  200. 200.
    Ito K, Uchida Y, Ohtsuki S, et al. Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci. 2011;100(9):3939–50.PubMedCrossRefGoogle Scholar
  201. 201.
    Kamiie J, Ohtsuki S, Iwase R, et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25(6):1469–83.PubMedCrossRefGoogle Scholar
  202. 202.
    Uchida Y, Ohtsuki S, Katsukura Y, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–45.PubMedCrossRefGoogle Scholar
  203. 203.
    Ohtsuki S, Hirayama M, Ito S, et al. Quantitative targeted proteomics for understanding the blood-brain barrier: towards pharmacoproteomics. Expert Rev Proteomics. 2014;11(3):303–13.PubMedCrossRefGoogle Scholar
  204. 204.
    Liu X, Ding X, Deshmukh G, et al. Use of the cassette-dosing approach to assess brain penetration in drug discovery. Drug Metab Dispos. 2012;40(5):963–9.PubMedCrossRefGoogle Scholar
  205. 205.
    Kodaira H, Kusuhara H, Ushiki J, et al. Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther. 2010;333:788–96.PubMedCrossRefGoogle Scholar
  206. 206.
    Polli JW, Olson KL, Chism JP, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos. 2009;37(2):439–42.PubMedCrossRefGoogle Scholar
  207. 207.
    Zhou L, Schmidt K, Nelson FR, et al. The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos. 2009;37(5):946–55.PubMedCrossRefGoogle Scholar
  208. 208.
    Doran A, Obach RS, Smith BJ, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33(1):165–74.PubMedCrossRefGoogle Scholar
  209. 209.
    Chen C, Hanson E, Watson JW, et al. P-Glycoprotein limits the brain penetration of nonsedating but not sedating H1-antagonists. Drug Metab Dispos. 2003;31(3):312–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Polli JW, Baughman TM, Humphreys JE et al. (2003) P-Glycoprotein influences the brain concentrations of cetirizine (Zyrtec®), a second-generation non-sedating antihistamine. J Pharm Sci 92(10): 2082–2089Google Scholar
  211. 211.
    Xia CQ, Xiao G, Liu N, et al. Comparison of species differences of P-glycoproteins in beagle dog, rhesus monkey, and human using ATPase activity assays. Mol Pharm. 2006;3(1):78–86.PubMedCrossRefGoogle Scholar
  212. 212.
    Katoh M, Suzuyama N, Takeuchi T, et al. Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J Pharm Sci. 2006;95(12):2673–83.PubMedCrossRefGoogle Scholar
  213. 213.
    Yamazaki M, Neway WE, Ohe T, et al. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001;296(3):723–35.PubMedGoogle Scholar
  214. 214.
    Feng B, Mills J, Davidson R, et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008;36(2):268–75.PubMedCrossRefGoogle Scholar
  215. 215.
    Gratton J, Abraham M, Bradbury M, et al. Molecular factors influencing drug transfer across the blood-brain barrier. J Pharm Pharmacol. 1997;49:1211–6.PubMedCrossRefGoogle Scholar
  216. 216.
    Liu X, Tu M, Kelly RS, et al. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Dispos. 2004;32(1):132–9.PubMedCrossRefGoogle Scholar
  217. 217.
    Clark DE. In silico prediction of blood-brain barrier permeation. Drug Discov Today. 2003;8(20):927–33.PubMedCrossRefGoogle Scholar
  218. 218.
    Hitchcock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem. 2006;49(26):7559–83.PubMedCrossRefGoogle Scholar
  219. 219.
    Lipinski CA. Filtering in drug discovery. Annu Rep Comput Chem. 2005;1:155–68.CrossRefGoogle Scholar
  220. 220.
    Wager TT, Hou X, Verhoest PR, et al. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci. 2010;1(6):435–49.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Naik P, Cucullo L. In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101(4):1337–54.PubMedCrossRefGoogle Scholar
  222. 222.
    Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30(8):783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Kalvass JC, Maurer TS. Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos. 2002;23(8):327–38.PubMedCrossRefGoogle Scholar
  224. 224.
    Liu X, Yeo H, Yau A, et al. Brain unbound drug concentration calculated from in vitro brain unbound fraction is consistent with brain extracellular fluid drug concentration measured by brain microdialysis for four model compounds. AAPS J. 2007;9(S2):T2439.Google Scholar
  225. 225.
    Becker S, Liu X. Evaluation of the utility of brain slice methods to study brain penetration. Drug Metab Dispos. 2006;34(5):855–61.PubMedCrossRefGoogle Scholar
  226. 226.
    Friden M, Gupta A, Antonsson M, et al. In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos. 2007;35(9):1711–9.PubMedCrossRefGoogle Scholar
  227. 227.
    Liu X, Cheong J, Ding X, et al. Use of cassette dosing approach to examine the effects of P-glycoprotein on the brain and cerebrospinal fluid concentrations in wild-type and P-glycoprotein knockout rats. Drug Metab Dispos. 2014;42(4):482–91.PubMedCrossRefGoogle Scholar
  228. 228.
    Shen DD, Artru AA, Adkison KK. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev. 2004;56(12):1825–57.PubMedCrossRefGoogle Scholar
  229. 229.
    Liu X, Smith BJ, Chen C, et al. Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab Dispos. 2006;34(9):1443–7.PubMedCrossRefGoogle Scholar
  230. 230.
    Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A. 1999;96(7):3900–5.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Wijnholds J, de Lange E, Scheffer G, et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest. 2000;105:279–85.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Bianca M. Liederer
    • 1
  • Xingrong Liu
    • 1
  • Simon Wong
    • 1
  • Daniel R. Mudra
    • 2
  1. 1.Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoUSA
  2. 2.ADME Drug Disposition, Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisUSA

Personalised recommendations