Discover Toxicology: An Early Safety Assessment Approach

  • Thomas K. Baker
  • Steven K. Engle
  • Bartley W. Halstead
  • Brianna M. Paisley
  • George H. Searfoss
  • Jeffrey A. Willy
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 25)


Early safety assessment efforts from target identification to lead development have undergone rapid growth and evolution over the last 10 years. In this chapter, we will discuss the current development trends driving the need for early safety assessment practices. We will discuss the key areas of focus which include target-related, off-target-related, and chemical property-related toxicities. We will offer an overview of the various scientific approaches being utilized in each of these focus areas along with an organizational framework that has proven effective in de-risking the early portfolio. We will conclude with some perspectives on application within the project team setting and traps associated with data over interpretation.


In silico safety pharmacology In vitro toxicology endpoint In vivo toxicology prediction Livery injury Toxicogenomics Gene editing Microphysiological culture systems Heart injury cell models Injection site irritation Skeletal muscle injury cell models Gastrointestinal injury cell models 


  1. 1.
    Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nature. 2006;5:821–34.Google Scholar
  2. 2.
    Dambach DM, Misner D, Brock M, Fullerton A, Proctor W, Maher J, Lee D, Ford K, Diaz D. Safety lead optimization and candidate identificaion: integrating new techologies into decision-making. Chem Res Toxicol. 2015;29(4):452–72.PubMedCrossRefGoogle Scholar
  3. 3.
    LaBute MX, Zhang X, Lenderman J, et al. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS One. 2014;9(9):e106298.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kim MS, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature. 2014;509(7502):575–81.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou PZ, Babcock J, Liu LQ, et al. Activation of human ether-a-go-go related gene (hERG) potassium channels by small molecules. Acta Pharmacol Sin. 2011;32(6):781–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jing Y, Easter A, Peters D, et al. In silico prediction of hERG inhibition. Future Med Chem. 2015;7(5):571–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen Y, Cheng F, Sun L, et al. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. Ecotoxicol Environ Saf. 2014;110:280–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Vuorinen A, Odermatt A, Schuster D. In silico methods in the discovery of endocrine disrupting chemicals. J Steroid Biochem Mol Biol. 2013;137:18–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang L, Sedykh A, Tripathi A, et al. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches. Toxicol Appl Pharmacol. 2013;272(1):67–76.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11):1046–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Sutherland JJ, Gao C, Cahya S, et al. What general conclusions can we draw from kinase profiling data sets? Biochim Biophys Acta. 2013;1834(7):1425–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Elangbam CS. Drug-induced valvulopathy: an update. Toxicol Pathol. 2010;38(6):837–48.PubMedCrossRefGoogle Scholar
  14. 14.
    Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87(8):1315–530.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lanning BR, Whitby LR, Dix MM, et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol. 2014;10(9):760–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Singh J, Petter RC, Baillie TA, et al. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10(4):307–17.PubMedCrossRefGoogle Scholar
  17. 17.
    Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012;486(7403):361–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Whitebread S, Hamon J, Bojanic D, et al. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov Today. 2005;10(21):1421–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Andersen ME, Krewski D. Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci. 2009;107(2):324–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Kavlock RJ, Austin CP, Tice RR. Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal. 2009;29(4):485–7. discussion 492–487PubMedCrossRefGoogle Scholar
  21. 21.
    Durazo SA, Kadam RS, Drechsel D, Patel M, Kompella UB. Brain mitochondria drug delivery: influence of drug physicochemical properties. Pharm Res. 2011;28(11):2833–47.PubMedCrossRefGoogle Scholar
  22. 22.
    Wager TT, Chandrasekaran RY, Hou X, et al. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Nerosci. 2010;1(6):420–34.CrossRefGoogle Scholar
  23. 23.
    Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6(11):881–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Diaz D, Ford KA, Hartley DP, et al. Pharmacokinetic drivers of toxicity for basic molecules: strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor. Toxicol Appl Pharmacol. 2013;266(1):86–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96(4):729–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008;18:4872–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Hughes TB, Miller GP, Swamidass SJ. Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione. Chem Res Toxicol. 2015;28(4):797–809.PubMedCrossRefGoogle Scholar
  28. 28.
    Masubuchi N, Makino C, Murayama N. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans. Chem Res Toxicol. 2007;20(3):455–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Maunz A, Gutlein M, Rautenberg M, et al. lazar: a modular predictive toxicology framework. Front Pharmacol. 2013;4:38.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schultz TW, Amcoff P, Berggren E, et al. A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol. 2015;72(3):586–601.PubMedCrossRefGoogle Scholar
  31. 31.
    Berson A, Descatoire V, Sutton A, et al. Toxicity of alpidem, a peripheral benzodiazepine receptor ligand, but not zolpidem, in rat hepatocytes: role of mitochondrial permeability transition and metabolic activation. J Pharmacol Exp Ther. 2001;299(2):793–800.PubMedGoogle Scholar
  32. 32.
    Ashby J, Tennant RW. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res. 1991;257(3):229–306.PubMedCrossRefGoogle Scholar
  33. 33.
    Doherty KR, Talbert DR, Trusk PB, et al. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types. Toxicol Appl Pharmacol. 2015;285(1):51–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Enayetallah AE, Puppala D, Ziemek D, et al. Assessing the translatability of in vivo cardiotoxicity mechanisms to in vitro models using causal reasoning. BMC Pharmacol Toxicol. 2013;14:46.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Savary CC, Jiang X, Aubry M, et al. Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015;30(1 Pt A):27–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Eisenbrand G, Pool-Zobel B, Baker V, et al. Methods of in vitro toxicology. Food Chem Toxicol. 2002;40(2–3):193–236.PubMedCrossRefGoogle Scholar
  37. 37.
    Kamalian L, Chadwick AE, Bayliss M, et al. The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicol In Vitro. 2015;29(4):732–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Mundy WR, Radio NM, Freudenrich TM. Neuronal models for evaluation of proliferation in vitro using high content screening. Toxicology. 2010;270(2–3):121–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Shah F, Greene N. Analysis of Pfizer compounds in EPA’s ToxCast chemicals-assay space. Chem Res Toxicol. 2014;27(1):86–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1100–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Xiao J, Suzek TO, et al. PubChem’s BioAssay database. Nucleic Acids Res. 2012;40(Database issue):D400–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Hewitt M, Ellison CM, Cronin MT, et al. Ensuring confidence in predictions: a scheme to assess the scientific validity of in silico models. Adv Drug Deliv Rev. 2015;86:101–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Sanz F, Carriû P, Lûpez O, et al. Integrative modeling strategies for predicting drug toxicities at the eTOX project. Mol Inform. 2015;34:477–84.PubMedCrossRefGoogle Scholar
  44. 44.
    Fielden MR, Adai A, Dunn 2nd RT, et al. Development and evaluation of a genomic signature for the prediction and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat. Toxicol Sci. 2011;124(1):54–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Phillips DH, Arlt VM. Genotoxicity: damage to DNA and its consequences. EXS. 2009;99:87–110.PubMedGoogle Scholar
  46. 46.
    Snyder RD, Green JW. A review of the genotoxicity of marketed pharmaceuticals. Mutat Res. 2001;488(2):151–69.PubMedCrossRefGoogle Scholar
  47. 47.
    Jolly R, Ahmed KB, Zwickl C, et al. An evaluation of in-house and off-the-shelf in silico models: implications on guidance for mutagenicity assessment. Regul Toxicol Pharmacol. 2015;71(3):388–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Sedykh A, Zhu H, Tang H, et al. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect. 2011;119(3):364–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Sutherland JJ, Raymond JW, Stevens JL, et al. Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem. 2012;55(14):6455–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Persson ML, Løye AF, Jacquet M, Mow NS, Thougaard AV, Mow T, Hornberg JJ. High-content analysis/screening for predictive toxicology: application to hepatotoxicity and genotoxicity. Basic Clin Pharmacol Toxicol. 2014;115:18–23.PubMedCrossRefGoogle Scholar
  51. 51.
    O'Brien PJ. High-content analysis in toxicology: screening substances fro human toxicity potential, elucidating subcellular mechanisms and in vivo use as translational safety biomarkers. Basic Clin Pharmacol Toxicol. 2014;115(1):4–17.PubMedCrossRefGoogle Scholar
  52. 52.
    Ryan TP, Stevens JL, Thomas CE. Strategic applications of toxicogenomics in early drug discovery. Curr Opin Pharmacol. 2008;8(5):654–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Clements M, Thomas N. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol Sci. 2014;140(2):445–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Brix J, Zhou Y, Luo Y. The epigenetic reprogramming roadmap in generation of iPSCs from somatic cells. J Genet Genomics. 2015;42(12):661–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Mann DA. Human induced pluripotent stem cell-derived hepatocytes for toxicology testing. Expert Opin Drug Metab Toxicol. 2015;11(1):1–5.PubMedGoogle Scholar
  56. 56.
    Fisher K, Vuppalanchi R, Saxena R. Drug-induced liver injury. Arch Pathol Lab Med. 2015;139:876–87.PubMedCrossRefGoogle Scholar
  57. 57.
    Li Z, Berk M, TM MI, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47(5):1495–503.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17(10):584–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Simmons JG, Hoyt EC, Westwick JK, et al. Insulin-like growth factor-I and epidermal growth factor interact to regulate growth and gene expression in IEC-6 intestinal epithelial cells. Mol Endocrinol. 1995;9(9):1157–65.PubMedGoogle Scholar
  60. 60.
    Wilson G. Cell culture techniques for the study of drug transport. Eur J Drug Metab Pharmacokinet. 1990;15(2):159–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Grabinger T, Luks L, Kostadinova F, et al. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 2014;5:e1228.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Branco AF, Pereira SP, Gonzalez S, et al. Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS One. 2015;10(6):e0129303.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sinnecker D, Laugwitz KL, Moretti A. Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacol Ther. 2014;143(2):246–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Marieb EN, Hohn K. Human anatomy & physiology. 8th ed. San Francisco: Benjamin Cummings; 2010.Google Scholar
  66. 66.
    Abujarour R, Valamehr B. Generation of skeletal muscle cells from pluripotent stem cells: advances and challenges. Front Cell Dev Biol. 2015;3:29.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Laska DA, Williams PD, Reboulet JT, et al. The L6 muscle cell line as a tool to evaluate parenteral products for irritation. J Parenter Sci Technol. 1991;45(2):77–82.PubMedGoogle Scholar
  68. 68.
    Laska DA, Williams PD, White SL, et al. In vitro correlation of ultrastructural morphology and creatine phosphokinase release in L6 skeletal muscle cells after exposure to parenteral antibiotics. In Vitro Cell Dev Biol. 1990;26(4):393–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Reams R, Thacker HL, Novilla M, et al. Development of an L6 myoblast in vitro model of moniliformin toxicosis. Mycopathologia. 1996;133(2):105–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Willy JA, Schulte NE, Kreklau EL, et al. In vitro L6 irritation assay predicts clinical injection site reactions for small molecules. Toxicol Sci. 2016;151(2):302–11.PubMedCrossRefGoogle Scholar
  71. 71.
    Mayer L, Young Y. Infusion reactions and their management. Gastroenterol Clin North Am. 2006;35(4):857–66.PubMedCrossRefGoogle Scholar
  72. 72.
    Parchment RE, Gordon M, Grieshaber CK, et al. Predicting hematological toxicity (myelosuppression) of cytotoxic drug therapy from in vitro tests. Ann Oncol. 1998;9(4):357–64.PubMedCrossRefGoogle Scholar
  73. 73.
    Pessina A, Albella B, Bayo M, Bueren J, Brantom P, Casati S, Croera G, Gagliardi G, Foti P, Parchment R, Parent-Massin D, Schoeters G, Sibiril Y, Van Den Heuvel R, Gribaldo L. Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci. 2003;75(2):355–67.PubMedCrossRefGoogle Scholar
  74. 74.
    Yin T, Lallena MJ, Kreklau EL, et al. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther. 2014;13(6):1442–56.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhao H, Oczos J, Janowski P, et al. Rationale for the real-time and dynamic cell death assays using propidium iodide. Cytometry A. 2010;77(4):399–405.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jennings P. The future of in vitro toxicology. Toxicol In Vitro. 2015;29(6):1217–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Krause MN, Sancho-Martinez I, Izpisua Belmonte JC. Understanding the molecular mechanisms of reprogramming. Biochem Biophys Res Commun. 2016;473(3):693–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Ben-Reuven L, Reiner O. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Dev Growth Differ. 2016;58(5):481–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Kawser Hossain M, Abdal Dayem A, Han J, et al. Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci. 2016;17(2):256.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Spitalieri P, Talarico VR, Murdocca M, et al. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells. 2016;8(4):118–35.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cerignoli F, Charlot D, Whittaker R, et al. High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J Pharmacol Toxicol Methods. 2012;66(3):246–56.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Guo L, Abrams RM, Babiarz JE, et al. Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2011;123(1):281–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Sirenko O, Crittenden C, Callamaras N, et al. Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J Biomol Screen. 2013;18(1):39–53.PubMedCrossRefGoogle Scholar
  84. 84.
    Coyne L, Shan M, Przyborski SA, et al. Neuropharmacological properties of neurons derived from human stem cells. Neurochem Int. 2011;59(3):404–12.PubMedCrossRefGoogle Scholar
  85. 85.
    Deshmukh RS, Kovacs KA, Dinnyes A. Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int. 2012;2012:379569.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Schwartz RE, Fleming HE, Khetani SR, et al. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv. 2014;32(2):504–13.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fabre KM, Livingston C, Tagle DA. Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue. Exp Biol Med (Maywood). 2014;239(9):1073–7.CrossRefGoogle Scholar
  88. 88.
    Aronson JK. Biomarkers and surrogate endpoints. Br J Clin Pharmacol. 2005;59(5):491–4.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Amur S, Frueh FW, Lesko LJ, et al. Integration and use of biomarkers in drug development, regulation and clinical practice: a US regulatory perspective. Biomark Med. 2008;2(3):305–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Pritchard JF, Jurima-Romet M, Reimer ML, et al. Making better drugs: decision gates in non-clinical drug development. Nat Rev Drug Discov. 2003;2(7):542–53.PubMedCrossRefGoogle Scholar
  92. 92.
    Sharma S, Jackson PG, Makan J. Cardiac troponins. J Clin Pathol. 2004;57(10):1025–6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Engle SK, Jordan WH, Pritt ML, et al. Qualification of cardiac troponin I concentration in mouse serum using isoproterenol and implementation in pharmacology studies to accelerate drug development. Toxicol Pathol. 2009;37(5):617–28.PubMedCrossRefGoogle Scholar
  94. 94.
    Goodsaid FM, Frueh FW, Mattes W. The Predictive Safety Testing Consortium: a synthesis of the goals, challenges and accomplishments of the Critical Path. Drug Discov Today Technol. 2007;4(2):47–50.PubMedCrossRefGoogle Scholar
  95. 95.
    Mikaelian I, Cameron M, Dalmas DA, et al. Nonclinical safety biomarkers of drug-induced vascular injury: current status and blueprint for the future. Toxicol Pathol. 2014;42(4):635–57.PubMedCrossRefGoogle Scholar
  96. 96.
    Ozer JS, Dieterle F, Troth S, et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol. 2010;28(5):486–94.PubMedCrossRefGoogle Scholar
  97. 97.
    Vaidya VS, Ozer JS, Dieterle F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010;28(5):478–85.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Vinken P, Reagan WJ, Rodriguez LA, et al. Cross-laboratory analytical validation of the cardiac biomarker NT-proANP in rat. J Pharmacol Toxicol Methods. 2016;77:58–65.PubMedCrossRefGoogle Scholar
  99. 99.
    Bodié K, Buck WR, Pieh J, et al. Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats. Exp Toxicol Pathol. 2016;68(5):289–99.PubMedCrossRefGoogle Scholar
  100. 100.
    Engle SK, Watson DE. Natriuretic peptides as cardiovascular safety biomarkers in rats: comparison with blood pressure, heart rate, and heart weight. Toxicol Sci. 2016;149(2):458–72.PubMedCrossRefGoogle Scholar
  101. 101.
    John-Baptiste A, Vitsky A, Sace F, et al. Comparison of 3 kidney injury multiplex panels in rats. Int J Toxicol. 2012;31(6):529–36.PubMedCrossRefGoogle Scholar
  102. 102.
    Siaj R, Sauer V, Stöppeler S, et al. Longitudinal analysis of serum miR-122 in a rat model of Wilson’s disease. Hepatol Int. 2012;6(4):770–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Usborne AL, Smith AT, Engle SK, et al. Biomarkers of exocrine pancreatic injury in 2 rat acute pancreatitis models. Toxicol Pathol. 2014;42(1):195–203.PubMedCrossRefGoogle Scholar
  104. 104.
    Jameson DM, Croney JC, Moens PD. Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol. 2003;360:1–43.PubMedCrossRefGoogle Scholar
  105. 105.
    Kohnhorst CL, Schmitt DL, Sundaram A, et al. Subcellular functions of proteins under fluorescence single-cell microscopy. Biochim Biophys Acta. 2016;1864(1):77–84.PubMedCrossRefGoogle Scholar
  106. 106.
    Efthymiou A, Shaltouki A, Steiner JP, et al. Functional screening assays with neurons generated from pluripotent stem cell-derived neural stem cells. J Biomol Screen. 2014;19(1):32–43.PubMedCrossRefGoogle Scholar
  107. 107.
    Radio NM, Mundy WR. Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology. 2008;29(3):361–76.PubMedCrossRefGoogle Scholar
  108. 108.
    Ganter B, Tugendreich S, Pearson CI, et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol. 2005;119(3):219–44.PubMedCrossRefGoogle Scholar
  109. 109.
    Guengerich FP, MacDonald JS. Applying mechanisms of chemical toxicity to predict drug safety. Chem Res Toxicol. 2007;20(3):344–69.PubMedCrossRefGoogle Scholar
  110. 110.
    Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sutherland JJ, Jolly RA, Goldstein KM, et al. Assessing concordance of drug-induced transcriptional response in rodent liver and cultured hepatocytes. PLoS Comput Biol. 2016;12(3):e1004847.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Gibson JK, Yue Y, Bronson J, et al. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. J Pharmacol Toxicol Methods. 2014;70(3):255–67.PubMedCrossRefGoogle Scholar
  113. 113.
    Johnstone AF, Gross GW, Weiss DG, et al. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 2010;31(4):331–50.PubMedCrossRefGoogle Scholar
  114. 114.
    Willy JA, Young SK, Stevens JL, et al. CHOP links endoplasmic reticulum stress to NF-kappaB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2015;26(12):2190–204.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Gaj T, Gersbach CA, Barbas 3rd CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Lin S, Staahl BT, Alla RK, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Maruyama T, Dougan SK, Truttmann MC, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538–42.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Thomas K. Baker
    • 1
  • Steven K. Engle
    • 1
  • Bartley W. Halstead
    • 1
  • Brianna M. Paisley
    • 1
  • George H. Searfoss
    • 1
  • Jeffrey A. Willy
    • 1
  1. 1.Department of Investigative ToxicologyLilly Research Labs, Eli Lilly and Company Lilly Corporate CenterIndianapolisUSA

Personalised recommendations